Loading…
Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing
Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR),...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (41), p.E2774-E2783 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633 |
container_end_page | E2783 |
container_issue | 41 |
container_start_page | E2774 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Lee, Heewook Popodi, Ellen Tang, Haixu Foster, Patricia L |
description | Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions. |
doi_str_mv | 10.1073/pnas.1210309109 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22991466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785770641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</originalsourceid><addsrcrecordid>eNpVkc2LFDEQxYMo7rh69qYBz71b-eh0chFkGT9gQVD3HDLp6uks08mYdK_syX_dDDPu6iUpqF-9etQj5DWDCwaduNxHVy4YZyDAMDBPyKq-rFHSwFOyAuBdoyWXZ-RFKbcAYFoNz8kZ58YwqdSK_P7mZqQu9nRKO_TLzmVa9ujnvEw0DbVOcXYR01LotMxuDikWGiKdR6Qb52fMoZLr4sda-TE46tMuUFdoj7U5hYg93dzTX2PVb7YY04S04M8Fow9x-5I8G9yu4KvTf05uPq5_XH1urr9--nL14brxsoO5kVowo4zQXEvGUCADtmkd-MEz4QehjOuxli0IjkwOetDemXoU3mvVKyHOyfuj7n7ZTNh7jHN2O7vPYXL53iYX7P-dGEa7TXdWyE4r0FXg3Ukgp2q-zPY2LTlWz7aevO0AlFCVujxSPqdSMg4PGxjYQ2L2kJh9TKxOvPnX2AP_N6IK0BNwmHyUM1Yyu-ZdJyvy9ogMLlm3zaHYm-8cmAJgVaY14g9taKht</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095700636</pqid></control><display><type>article</type><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</creator><creatorcontrib>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</creatorcontrib><description>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210309109</identifier><identifier>PMID: 22991466</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphatases - genetics ; bacteria ; base pair mismatch ; Base Sequence ; Binding Sites - genetics ; Biological Sciences ; DNA Methylation ; DNA Mismatch Repair - genetics ; DNA repair ; DNA Replication - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; E coli ; environmental factors ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Genes, Bacterial - genetics ; Genetics ; genome ; Genome, Bacterial - genetics ; Genomes ; INDEL Mutation ; Monte Carlo Method ; Mutation ; Mutation Rate ; MutL Proteins ; PNAS Plus ; Point Mutation ; Polymorphism, Single Nucleotide ; Selection, Genetic ; sequence analysis ; Sequence Analysis, DNA - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (41), p.E2774-E2783</ispartof><rights>Copyright National Academy of Sciences Oct 9, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</citedby><cites>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478608/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478608/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22991466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Heewook</creatorcontrib><creatorcontrib>Popodi, Ellen</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><creatorcontrib>Foster, Patricia L</creatorcontrib><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>bacteria</subject><subject>base pair mismatch</subject><subject>Base Sequence</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>DNA Methylation</subject><subject>DNA Mismatch Repair - genetics</subject><subject>DNA repair</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>E coli</subject><subject>environmental factors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Genes, Bacterial - genetics</subject><subject>Genetics</subject><subject>genome</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>INDEL Mutation</subject><subject>Monte Carlo Method</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>MutL Proteins</subject><subject>PNAS Plus</subject><subject>Point Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Selection, Genetic</subject><subject>sequence analysis</subject><subject>Sequence Analysis, DNA - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkc2LFDEQxYMo7rh69qYBz71b-eh0chFkGT9gQVD3HDLp6uks08mYdK_syX_dDDPu6iUpqF-9etQj5DWDCwaduNxHVy4YZyDAMDBPyKq-rFHSwFOyAuBdoyWXZ-RFKbcAYFoNz8kZ58YwqdSK_P7mZqQu9nRKO_TLzmVa9ujnvEw0DbVOcXYR01LotMxuDikWGiKdR6Qb52fMoZLr4sda-TE46tMuUFdoj7U5hYg93dzTX2PVb7YY04S04M8Fow9x-5I8G9yu4KvTf05uPq5_XH1urr9--nL14brxsoO5kVowo4zQXEvGUCADtmkd-MEz4QehjOuxli0IjkwOetDemXoU3mvVKyHOyfuj7n7ZTNh7jHN2O7vPYXL53iYX7P-dGEa7TXdWyE4r0FXg3Ukgp2q-zPY2LTlWz7aevO0AlFCVujxSPqdSMg4PGxjYQ2L2kJh9TKxOvPnX2AP_N6IK0BNwmHyUM1Yyu-ZdJyvy9ogMLlm3zaHYm-8cmAJgVaY14g9taKht</recordid><startdate>20121009</startdate><enddate>20121009</enddate><creator>Lee, Heewook</creator><creator>Popodi, Ellen</creator><creator>Tang, Haixu</creator><creator>Foster, Patricia L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121009</creationdate><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><author>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>bacteria</topic><topic>base pair mismatch</topic><topic>Base Sequence</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>DNA Methylation</topic><topic>DNA Mismatch Repair - genetics</topic><topic>DNA repair</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>E coli</topic><topic>environmental factors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Genes, Bacterial - genetics</topic><topic>Genetics</topic><topic>genome</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>INDEL Mutation</topic><topic>Monte Carlo Method</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>MutL Proteins</topic><topic>PNAS Plus</topic><topic>Point Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Selection, Genetic</topic><topic>sequence analysis</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heewook</creatorcontrib><creatorcontrib>Popodi, Ellen</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><creatorcontrib>Foster, Patricia L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heewook</au><au>Popodi, Ellen</au><au>Tang, Haixu</au><au>Foster, Patricia L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-10-09</date><risdate>2012</risdate><volume>109</volume><issue>41</issue><spage>E2774</spage><epage>E2783</epage><pages>E2774-E2783</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22991466</pmid><doi>10.1073/pnas.1210309109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (41), p.E2774-E2783 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_22991466 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Adenosine Triphosphatases - genetics bacteria base pair mismatch Base Sequence Binding Sites - genetics Biological Sciences DNA Methylation DNA Mismatch Repair - genetics DNA repair DNA Replication - genetics DNA, Bacterial - chemistry DNA, Bacterial - genetics E coli environmental factors Escherichia coli Escherichia coli - genetics Escherichia coli Proteins - genetics Genes, Bacterial - genetics Genetics genome Genome, Bacterial - genetics Genomes INDEL Mutation Monte Carlo Method Mutation Mutation Rate MutL Proteins PNAS Plus Point Mutation Polymorphism, Single Nucleotide Selection, Genetic sequence analysis Sequence Analysis, DNA - methods |
title | Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20and%20molecular%20spectrum%20of%20spontaneous%20mutations%20in%20the%20bacterium%20Escherichia%20coli%20as%20determined%20by%20whole-genome%20sequencing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Heewook&rft.date=2012-10-09&rft.volume=109&rft.issue=41&rft.spage=E2774&rft.epage=E2783&rft.pages=E2774-E2783&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1210309109&rft_dat=%3Cproquest_pubme%3E2785770641%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095700636&rft_id=info:pmid/22991466&rfr_iscdi=true |