Loading…

Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing

Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR),...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (41), p.E2774-E2783
Main Authors: Lee, Heewook, Popodi, Ellen, Tang, Haixu, Foster, Patricia L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633
cites cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633
container_end_page E2783
container_issue 41
container_start_page E2774
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Lee, Heewook
Popodi, Ellen
Tang, Haixu
Foster, Patricia L
description Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.
doi_str_mv 10.1073/pnas.1210309109
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_22991466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785770641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</originalsourceid><addsrcrecordid>eNpVkc2LFDEQxYMo7rh69qYBz71b-eh0chFkGT9gQVD3HDLp6uks08mYdK_syX_dDDPu6iUpqF-9etQj5DWDCwaduNxHVy4YZyDAMDBPyKq-rFHSwFOyAuBdoyWXZ-RFKbcAYFoNz8kZ58YwqdSK_P7mZqQu9nRKO_TLzmVa9ujnvEw0DbVOcXYR01LotMxuDikWGiKdR6Qb52fMoZLr4sda-TE46tMuUFdoj7U5hYg93dzTX2PVb7YY04S04M8Fow9x-5I8G9yu4KvTf05uPq5_XH1urr9--nL14brxsoO5kVowo4zQXEvGUCADtmkd-MEz4QehjOuxli0IjkwOetDemXoU3mvVKyHOyfuj7n7ZTNh7jHN2O7vPYXL53iYX7P-dGEa7TXdWyE4r0FXg3Ukgp2q-zPY2LTlWz7aevO0AlFCVujxSPqdSMg4PGxjYQ2L2kJh9TKxOvPnX2AP_N6IK0BNwmHyUM1Yyu-ZdJyvy9ogMLlm3zaHYm-8cmAJgVaY14g9taKht</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095700636</pqid></control><display><type>article</type><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</creator><creatorcontrib>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</creatorcontrib><description>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C &gt; A:T mutations, but the bias changes to A:T &gt; G:C mutations in the absence of MMR; (iii) during replication, A:T &gt; G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C &gt; A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1210309109</identifier><identifier>PMID: 22991466</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine Triphosphatases - genetics ; bacteria ; base pair mismatch ; Base Sequence ; Binding Sites - genetics ; Biological Sciences ; DNA Methylation ; DNA Mismatch Repair - genetics ; DNA repair ; DNA Replication - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; E coli ; environmental factors ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Genes, Bacterial - genetics ; Genetics ; genome ; Genome, Bacterial - genetics ; Genomes ; INDEL Mutation ; Monte Carlo Method ; Mutation ; Mutation Rate ; MutL Proteins ; PNAS Plus ; Point Mutation ; Polymorphism, Single Nucleotide ; Selection, Genetic ; sequence analysis ; Sequence Analysis, DNA - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (41), p.E2774-E2783</ispartof><rights>Copyright National Academy of Sciences Oct 9, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</citedby><cites>FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478608/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478608/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22991466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Heewook</creatorcontrib><creatorcontrib>Popodi, Ellen</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><creatorcontrib>Foster, Patricia L</creatorcontrib><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C &gt; A:T mutations, but the bias changes to A:T &gt; G:C mutations in the absence of MMR; (iii) during replication, A:T &gt; G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C &gt; A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>bacteria</subject><subject>base pair mismatch</subject><subject>Base Sequence</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>DNA Methylation</subject><subject>DNA Mismatch Repair - genetics</subject><subject>DNA repair</subject><subject>DNA Replication - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>E coli</subject><subject>environmental factors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Genes, Bacterial - genetics</subject><subject>Genetics</subject><subject>genome</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>INDEL Mutation</subject><subject>Monte Carlo Method</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>MutL Proteins</subject><subject>PNAS Plus</subject><subject>Point Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Selection, Genetic</subject><subject>sequence analysis</subject><subject>Sequence Analysis, DNA - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkc2LFDEQxYMo7rh69qYBz71b-eh0chFkGT9gQVD3HDLp6uks08mYdK_syX_dDDPu6iUpqF-9etQj5DWDCwaduNxHVy4YZyDAMDBPyKq-rFHSwFOyAuBdoyWXZ-RFKbcAYFoNz8kZ58YwqdSK_P7mZqQu9nRKO_TLzmVa9ujnvEw0DbVOcXYR01LotMxuDikWGiKdR6Qb52fMoZLr4sda-TE46tMuUFdoj7U5hYg93dzTX2PVb7YY04S04M8Fow9x-5I8G9yu4KvTf05uPq5_XH1urr9--nL14brxsoO5kVowo4zQXEvGUCADtmkd-MEz4QehjOuxli0IjkwOetDemXoU3mvVKyHOyfuj7n7ZTNh7jHN2O7vPYXL53iYX7P-dGEa7TXdWyE4r0FXg3Ukgp2q-zPY2LTlWz7aevO0AlFCVujxSPqdSMg4PGxjYQ2L2kJh9TKxOvPnX2AP_N6IK0BNwmHyUM1Yyu-ZdJyvy9ogMLlm3zaHYm-8cmAJgVaY14g9taKht</recordid><startdate>20121009</startdate><enddate>20121009</enddate><creator>Lee, Heewook</creator><creator>Popodi, Ellen</creator><creator>Tang, Haixu</creator><creator>Foster, Patricia L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20121009</creationdate><title>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</title><author>Lee, Heewook ; Popodi, Ellen ; Tang, Haixu ; Foster, Patricia L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>bacteria</topic><topic>base pair mismatch</topic><topic>Base Sequence</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>DNA Methylation</topic><topic>DNA Mismatch Repair - genetics</topic><topic>DNA repair</topic><topic>DNA Replication - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>E coli</topic><topic>environmental factors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Genes, Bacterial - genetics</topic><topic>Genetics</topic><topic>genome</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>INDEL Mutation</topic><topic>Monte Carlo Method</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>MutL Proteins</topic><topic>PNAS Plus</topic><topic>Point Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Selection, Genetic</topic><topic>sequence analysis</topic><topic>Sequence Analysis, DNA - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Heewook</creatorcontrib><creatorcontrib>Popodi, Ellen</creatorcontrib><creatorcontrib>Tang, Haixu</creatorcontrib><creatorcontrib>Foster, Patricia L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Heewook</au><au>Popodi, Ellen</au><au>Tang, Haixu</au><au>Foster, Patricia L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-10-09</date><risdate>2012</risdate><volume>109</volume><issue>41</issue><spage>E2774</spage><epage>E2783</epage><pages>E2774-E2783</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10 ⁻³ per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C &gt; A:T mutations, but the bias changes to A:T &gt; G:C mutations in the absence of MMR; (iii) during replication, A:T &gt; G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C &gt; A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22991466</pmid><doi>10.1073/pnas.1210309109</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-10, Vol.109 (41), p.E2774-E2783
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_22991466
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Adenosine Triphosphatases - genetics
bacteria
base pair mismatch
Base Sequence
Binding Sites - genetics
Biological Sciences
DNA Methylation
DNA Mismatch Repair - genetics
DNA repair
DNA Replication - genetics
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
E coli
environmental factors
Escherichia coli
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Genes, Bacterial - genetics
Genetics
genome
Genome, Bacterial - genetics
Genomes
INDEL Mutation
Monte Carlo Method
Mutation
Mutation Rate
MutL Proteins
PNAS Plus
Point Mutation
Polymorphism, Single Nucleotide
Selection, Genetic
sequence analysis
Sequence Analysis, DNA - methods
title Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rate%20and%20molecular%20spectrum%20of%20spontaneous%20mutations%20in%20the%20bacterium%20Escherichia%20coli%20as%20determined%20by%20whole-genome%20sequencing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Heewook&rft.date=2012-10-09&rft.volume=109&rft.issue=41&rft.spage=E2774&rft.epage=E2783&rft.pages=E2774-E2783&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1210309109&rft_dat=%3Cproquest_pubme%3E2785770641%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-48319693828411e3e101b5a0cfc13cf369adec135032e14f8f8ca93092d86d633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1095700636&rft_id=info:pmid/22991466&rfr_iscdi=true