Loading…

Imaging a functional tumorigenic biomarker in the transformed epithelium

Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matri...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-01, Vol.110 (1), p.93-98
Main Authors: LeBeau, Aaron M., Lee, Minhee, Murphy, Stephanie T., Hann, Byron C., Warren, Robert S., Santos, Romelyn Delos, Kurhanewicz, John, Hanash, Samir M., VanBrocklin, Henry F., Craik, Charles S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proteases responsible for the increased peritumoral proteolysis associated with cancer represent functional biomarkers for monitoring tumorigenesis. One attractive extracellular biomarker is the transmembrane serine protease matriptase. Found on the surface of epithelial cells, the activity of matriptase is regulated by its cognate inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Quantitative mass spectrometry allowed us to show that, in selected cancers, HAI-1 expression decreases, leading to active matriptase. A preclinical probe specific for the measurement of emergent active matriptase was developed. Using an active-site–specific, recombinant human antibody for matriptase, we found that the selective targeting of active matriptase can be used to visualize the tumorigenic epithelium. Live-cell fluorescence imaging validated the selectivity of the antibody in vitro by showing that the probe localized only to cancer cell lines with active matriptase on the surface. Immunofluorescence with the antibody documented significant levels of active matriptase in 68% of primary and metastatic colon cancer sections from tissue microarrays. Labeling of the active form of matriptase in vivo was measured in human colon cancer xenografts and in a patient-derived xenograft model using near-infrared and single-photon emission computed tomography imaging. Tumor uptake of the radiolabeled antibody, ¹¹¹In-A11, by active matriptase was high in xenografts (28% injected dose per gram) and was blocked in vivo by the addition of a matriptase-specific variant of ecotin. These findings suggest, through a HAI-1–dependent mechanism, that emergent active matriptase is a functional biomarker of the transformed epithelium and that its proteolytic activity can be exploited to noninvasively evaluate tumorigenesis in vivo.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1218694110