Loading…

Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO4(2-), Cl- , NO3-) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): implications For Ni risk assessment

The effect of major cation activity (Ca(2+) , Mg(2+) , Na(+) , K(+) ) on Ni toxicity, with dose expressed as exposure (total dissolved Ni concentration NiTot ) or free Ni ion activity (in solution Ni(2+) ), or as tissue residue (Ni concentration in plant tissue NiTiss ) to the aquatic plant Lemna mi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2013-04, Vol.32 (4), p.810
Main Authors: Gopalapillai, Yamini, Hale, Beverley, Vigneault, Bernard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of major cation activity (Ca(2+) , Mg(2+) , Na(+) , K(+) ) on Ni toxicity, with dose expressed as exposure (total dissolved Ni concentration NiTot ) or free Ni ion activity (in solution Ni(2+) ), or as tissue residue (Ni concentration in plant tissue NiTiss ) to the aquatic plant Lemna minor L. was examined. In addition, Ni accumulation kinetics was explored to provide mechanistic insight into current approaches of toxicity modeling, such as the tissue residue approach and the biotic ligand model (BLM), and the implications for plant Ni risk assessment. Major cations did not inhibit Ni accumulation via competitive inhibition as expected by the BLM framework. For example, Ca(2+) and Mg(2+) (sulfate as counter-anion) had an anticompetitive effect on Ni accumulation, suggesting that Ca or Mg forms a ternary complex with Ni-biotic ligand. The counter-anion of the added Ca (sulfate, chloride, or nitrate) affected plant response (percentage of root growth inhibition) to Ni. Generally, sulfate and chloride influenced plant response while nitrate did not, even when compared within the same range of Ca(2+) , which suggests that the anion dominated the observed plant response. Overall, although an effect of major cations on Ni toxicity to L. minor L. was observed at a physiological level, Ni(2+) or NiTot alone modeled plant response, generally within a span of twofold, over a wide range of water chemistry. Thus, consideration of major cation competition for improving Ni toxicity predictions in risk assessment for aquatic plants may not be necessary.
ISSN:1552-8618
DOI:10.1002/etc.2116