Loading…

Direct activation of full-length proapoptotic BAK

Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology doma...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-03, Vol.110 (11), p.E986-E995
Main Authors: Leshchiner, Elizaveta S, Braun, Craig R, Bird, Gregory H, Walensky, Loren D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3
cites cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3
container_end_page E995
container_issue 11
container_start_page E986
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Leshchiner, Elizaveta S
Braun, Craig R
Bird, Gregory H
Walensky, Loren D
description Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.
doi_str_mv 10.1073/pnas.1214313110
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23404709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916266901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EgvJYs4NIrAMztuPHBok3CCQW0LXluk4bFOLguEj8PYlaCqxmMWfuXB1CDhFOESQ7axvbnSJFzpAhwgYZIWjMBdewSUYAVOaKU75DdrvuDQB0oWCb7FDGgUvQI4LXVfQuZdal6tOmKjRZKLNyUdd57ZtZmmdtDLYNbQqpctnlxeM-2Spt3fmD1dwj49ub16v7_On57uHq4il3XOiUc6onglvpkTpWWGvFpCgkk1BQmHrNtFKgJVOKK-1AKCcdVQieSi2sKCZsj5wvc9vF5N1PnW9StLVpY_Vu45cJtjL_N001N7PwaZgA4AL7gJNVQAwfC98l8xYWsek7m16WEAo1DtTZknIxdF305foDghkcm8Gx-XXcXxz9Lbbmf6T2wPEKGC7XcUMemhutxC9R2mDsLFadGb9QwL45MsWRsm9zUYlR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316681911</pqid></control><display><type>article</type><title>Direct activation of full-length proapoptotic BAK</title><source>Open Access: PubMed Central</source><source>JSTOR</source><creator>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</creator><creatorcontrib>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</creatorcontrib><description>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1214313110</identifier><identifier>PMID: 23404709</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Apoptosis - physiology ; bcl-2 Homologous Antagonist-Killer Protein - chemistry ; bcl-2 Homologous Antagonist-Killer Protein - genetics ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; bcl-2-Associated X Protein - chemistry ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Binding sites ; Biochemistry ; Biological Sciences ; Humans ; Ligands ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Liver - chemistry ; Mitochondria, Liver - genetics ; Mitochondria, Liver - metabolism ; Mutagenesis ; PNAS Plus ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.E986-E995</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</citedby><cites>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600461/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600461/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23404709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leshchiner, Elizaveta S</creatorcontrib><creatorcontrib>Braun, Craig R</creatorcontrib><creatorcontrib>Bird, Gregory H</creatorcontrib><creatorcontrib>Walensky, Loren D</creatorcontrib><title>Direct activation of full-length proapoptotic BAK</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - chemistry</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - genetics</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>bcl-2-Associated X Protein - chemistry</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Humans</subject><subject>Ligands</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - chemistry</subject><subject>Mitochondria, Liver - genetics</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mutagenesis</subject><subject>PNAS Plus</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EgvJYs4NIrAMztuPHBok3CCQW0LXluk4bFOLguEj8PYlaCqxmMWfuXB1CDhFOESQ7axvbnSJFzpAhwgYZIWjMBdewSUYAVOaKU75DdrvuDQB0oWCb7FDGgUvQI4LXVfQuZdal6tOmKjRZKLNyUdd57ZtZmmdtDLYNbQqpctnlxeM-2Spt3fmD1dwj49ub16v7_On57uHq4il3XOiUc6onglvpkTpWWGvFpCgkk1BQmHrNtFKgJVOKK-1AKCcdVQieSi2sKCZsj5wvc9vF5N1PnW9StLVpY_Vu45cJtjL_N001N7PwaZgA4AL7gJNVQAwfC98l8xYWsek7m16WEAo1DtTZknIxdF305foDghkcm8Gx-XXcXxz9Lbbmf6T2wPEKGC7XcUMemhutxC9R2mDsLFadGb9QwL45MsWRsm9zUYlR</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Leshchiner, Elizaveta S</creator><creator>Braun, Craig R</creator><creator>Bird, Gregory H</creator><creator>Walensky, Loren D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130312</creationdate><title>Direct activation of full-length proapoptotic BAK</title><author>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - chemistry</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - genetics</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>bcl-2-Associated X Protein - chemistry</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Humans</topic><topic>Ligands</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - chemistry</topic><topic>Mitochondria, Liver - genetics</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mutagenesis</topic><topic>PNAS Plus</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leshchiner, Elizaveta S</creatorcontrib><creatorcontrib>Braun, Craig R</creatorcontrib><creatorcontrib>Bird, Gregory H</creatorcontrib><creatorcontrib>Walensky, Loren D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leshchiner, Elizaveta S</au><au>Braun, Craig R</au><au>Bird, Gregory H</au><au>Walensky, Loren D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct activation of full-length proapoptotic BAK</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>110</volume><issue>11</issue><spage>E986</spage><epage>E995</epage><pages>E986-E995</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23404709</pmid><doi>10.1073/pnas.1214313110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.E986-E995
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_23404709
source Open Access: PubMed Central; JSTOR
subjects Animals
Apoptosis
Apoptosis - physiology
bcl-2 Homologous Antagonist-Killer Protein - chemistry
bcl-2 Homologous Antagonist-Killer Protein - genetics
bcl-2 Homologous Antagonist-Killer Protein - metabolism
bcl-2-Associated X Protein - chemistry
bcl-2-Associated X Protein - genetics
bcl-2-Associated X Protein - metabolism
Binding sites
Biochemistry
Biological Sciences
Humans
Ligands
Mice
Mice, Knockout
Mitochondria
Mitochondria, Liver - chemistry
Mitochondria, Liver - genetics
Mitochondria, Liver - metabolism
Mutagenesis
PNAS Plus
Protein Structure, Secondary
Protein Structure, Tertiary
Protein Transport
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
title Direct activation of full-length proapoptotic BAK
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20activation%20of%20full-length%20proapoptotic%20BAK&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leshchiner,%20Elizaveta%20S&rft.date=2013-03-12&rft.volume=110&rft.issue=11&rft.spage=E986&rft.epage=E995&rft.pages=E986-E995&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1214313110&rft_dat=%3Cproquest_pubme%3E2916266901%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1316681911&rft_id=info:pmid/23404709&rfr_iscdi=true