Loading…
Direct activation of full-length proapoptotic BAK
Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology doma...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-03, Vol.110 (11), p.E986-E995 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3 |
container_end_page | E995 |
container_issue | 11 |
container_start_page | E986 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Leshchiner, Elizaveta S Braun, Craig R Bird, Gregory H Walensky, Loren D |
description | Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX. |
doi_str_mv | 10.1073/pnas.1214313110 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_23404709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916266901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0EgvJYs4NIrAMztuPHBok3CCQW0LXluk4bFOLguEj8PYlaCqxmMWfuXB1CDhFOESQ7axvbnSJFzpAhwgYZIWjMBdewSUYAVOaKU75DdrvuDQB0oWCb7FDGgUvQI4LXVfQuZdal6tOmKjRZKLNyUdd57ZtZmmdtDLYNbQqpctnlxeM-2Spt3fmD1dwj49ub16v7_On57uHq4il3XOiUc6onglvpkTpWWGvFpCgkk1BQmHrNtFKgJVOKK-1AKCcdVQieSi2sKCZsj5wvc9vF5N1PnW9StLVpY_Vu45cJtjL_N001N7PwaZgA4AL7gJNVQAwfC98l8xYWsek7m16WEAo1DtTZknIxdF305foDghkcm8Gx-XXcXxz9Lbbmf6T2wPEKGC7XcUMemhutxC9R2mDsLFadGb9QwL45MsWRsm9zUYlR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316681911</pqid></control><display><type>article</type><title>Direct activation of full-length proapoptotic BAK</title><source>Open Access: PubMed Central</source><source>JSTOR</source><creator>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</creator><creatorcontrib>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</creatorcontrib><description>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1214313110</identifier><identifier>PMID: 23404709</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Apoptosis - physiology ; bcl-2 Homologous Antagonist-Killer Protein - chemistry ; bcl-2 Homologous Antagonist-Killer Protein - genetics ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; bcl-2-Associated X Protein - chemistry ; bcl-2-Associated X Protein - genetics ; bcl-2-Associated X Protein - metabolism ; Binding sites ; Biochemistry ; Biological Sciences ; Humans ; Ligands ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria, Liver - chemistry ; Mitochondria, Liver - genetics ; Mitochondria, Liver - metabolism ; Mutagenesis ; PNAS Plus ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.E986-E995</ispartof><rights>Copyright National Academy of Sciences Mar 12, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</citedby><cites>FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600461/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600461/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23404709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leshchiner, Elizaveta S</creatorcontrib><creatorcontrib>Braun, Craig R</creatorcontrib><creatorcontrib>Bird, Gregory H</creatorcontrib><creatorcontrib>Walensky, Loren D</creatorcontrib><title>Direct activation of full-length proapoptotic BAK</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - chemistry</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - genetics</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>bcl-2-Associated X Protein - chemistry</subject><subject>bcl-2-Associated X Protein - genetics</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Humans</subject><subject>Ligands</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria, Liver - chemistry</subject><subject>Mitochondria, Liver - genetics</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mutagenesis</subject><subject>PNAS Plus</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0EgvJYs4NIrAMztuPHBok3CCQW0LXluk4bFOLguEj8PYlaCqxmMWfuXB1CDhFOESQ7axvbnSJFzpAhwgYZIWjMBdewSUYAVOaKU75DdrvuDQB0oWCb7FDGgUvQI4LXVfQuZdal6tOmKjRZKLNyUdd57ZtZmmdtDLYNbQqpctnlxeM-2Spt3fmD1dwj49ub16v7_On57uHq4il3XOiUc6onglvpkTpWWGvFpCgkk1BQmHrNtFKgJVOKK-1AKCcdVQieSi2sKCZsj5wvc9vF5N1PnW9StLVpY_Vu45cJtjL_N001N7PwaZgA4AL7gJNVQAwfC98l8xYWsek7m16WEAo1DtTZknIxdF305foDghkcm8Gx-XXcXxz9Lbbmf6T2wPEKGC7XcUMemhutxC9R2mDsLFadGb9QwL45MsWRsm9zUYlR</recordid><startdate>20130312</startdate><enddate>20130312</enddate><creator>Leshchiner, Elizaveta S</creator><creator>Braun, Craig R</creator><creator>Bird, Gregory H</creator><creator>Walensky, Loren D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130312</creationdate><title>Direct activation of full-length proapoptotic BAK</title><author>Leshchiner, Elizaveta S ; Braun, Craig R ; Bird, Gregory H ; Walensky, Loren D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - chemistry</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - genetics</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>bcl-2-Associated X Protein - chemistry</topic><topic>bcl-2-Associated X Protein - genetics</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Humans</topic><topic>Ligands</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria, Liver - chemistry</topic><topic>Mitochondria, Liver - genetics</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mutagenesis</topic><topic>PNAS Plus</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leshchiner, Elizaveta S</creatorcontrib><creatorcontrib>Braun, Craig R</creatorcontrib><creatorcontrib>Bird, Gregory H</creatorcontrib><creatorcontrib>Walensky, Loren D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leshchiner, Elizaveta S</au><au>Braun, Craig R</au><au>Bird, Gregory H</au><au>Walensky, Loren D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct activation of full-length proapoptotic BAK</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-03-12</date><risdate>2013</risdate><volume>110</volume><issue>11</issue><spage>E986</spage><epage>E995</epage><pages>E986-E995</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2–associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3–interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23404709</pmid><doi>10.1073/pnas.1214313110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-03, Vol.110 (11), p.E986-E995 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_23404709 |
source | Open Access: PubMed Central; JSTOR |
subjects | Animals Apoptosis Apoptosis - physiology bcl-2 Homologous Antagonist-Killer Protein - chemistry bcl-2 Homologous Antagonist-Killer Protein - genetics bcl-2 Homologous Antagonist-Killer Protein - metabolism bcl-2-Associated X Protein - chemistry bcl-2-Associated X Protein - genetics bcl-2-Associated X Protein - metabolism Binding sites Biochemistry Biological Sciences Humans Ligands Mice Mice, Knockout Mitochondria Mitochondria, Liver - chemistry Mitochondria, Liver - genetics Mitochondria, Liver - metabolism Mutagenesis PNAS Plus Protein Structure, Secondary Protein Structure, Tertiary Protein Transport Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism |
title | Direct activation of full-length proapoptotic BAK |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20activation%20of%20full-length%20proapoptotic%20BAK&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Leshchiner,%20Elizaveta%20S&rft.date=2013-03-12&rft.volume=110&rft.issue=11&rft.spage=E986&rft.epage=E995&rft.pages=E986-E995&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1214313110&rft_dat=%3Cproquest_pubme%3E2916266901%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-429b64a7e12c35aaa6b557370520de93988097388489c068c7c2810e2796a65b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1316681911&rft_id=info:pmid/23404709&rfr_iscdi=true |