Loading…

piRNAs and epigenetic conversion in Drosophila

Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic indu...

Full description

Saved in:
Bibliographic Details
Published in:Fly (Austin, Tex.) Tex.), 2013-10, Vol.7 (4), p.237-241
Main Authors: de Vanssay, Augustin, Bougé, Anne-Laure, Boivin, Antoine, Hermant, Catherine, Teysset, Laure, Delmarre, Valérie, Antoniewski, Christophe, Ronsseray, Stéphane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3
cites cdi_FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3
container_end_page 241
container_issue 4
container_start_page 237
container_title Fly (Austin, Tex.)
container_volume 7
creator de Vanssay, Augustin
Bougé, Anne-Laure
Boivin, Antoine
Hermant, Catherine
Teysset, Laure
Delmarre, Valérie
Antoniewski, Christophe
Ronsseray, Stéphane
description Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n > 50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently-a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.
doi_str_mv 10.4161/fly.26522
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24088599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cbf5643971ba4ccabbfefa74fda6dbeb</doaj_id><sourcerecordid>1541383352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3</originalsourceid><addsrcrecordid>eNplkU1vEzEQhi0EoqVw4A-gPcIhwd-7viBFpaWVIpAQnK1Z7zhxtbEXexOUf8-mKYHCyaPx42dsv4S8ZnQumWbvfb-fc604f0LOmRFipo3kT0-1kGfkRSl3lKpaUfWcnHFJm0YZc07mQ_j6eVEqiF2FQ1hhxDG4yqW4w1xCilWI1cecShrWoYeX5JmHvuCrh_WCfL---nZ5M1t--XR7uVjOnOJ0nBnPhaaaexDGMY7gTGeMbBCYpNDUXHLXcgZCA2Ou7RBBGfRTyVDU0IoLcnv0dgnu7JDDBvLeJgj2vpHyykKeLtqjda1XWgpTsxakc9C2Hj3U0neguxYPrg9H17BtN9g5jGOG_pH08U4Ma7tKOysao6VRk-DdUbD-59jNYmkPPcqUqJkwOzaxbx-G5fRji2W0m1Ac9j1ETNtimZJMNEIo_kfrpu8tGf3Jzag95GqnXO19rhP75u83nMjfQU6APAIh-pQ38DPlvrMj7PuUfYboQrHif-8v27yxBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541383352</pqid></control><display><type>article</type><title>piRNAs and epigenetic conversion in Drosophila</title><source>PubMed Central</source><creator>de Vanssay, Augustin ; Bougé, Anne-Laure ; Boivin, Antoine ; Hermant, Catherine ; Teysset, Laure ; Delmarre, Valérie ; Antoniewski, Christophe ; Ronsseray, Stéphane</creator><creatorcontrib>de Vanssay, Augustin ; Bougé, Anne-Laure ; Boivin, Antoine ; Hermant, Catherine ; Teysset, Laure ; Delmarre, Valérie ; Antoniewski, Christophe ; Ronsseray, Stéphane</creatorcontrib><description>Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n &gt; 50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently-a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.</description><identifier>ISSN: 1933-6934</identifier><identifier>EISSN: 1933-6942</identifier><identifier>DOI: 10.4161/fly.26522</identifier><identifier>PMID: 24088599</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Bioinformatics ; cellular memory ; Computer Science ; Cytoplasm - metabolism ; Drosophila melanogaster - genetics ; Epigenesis, Genetic ; epigenetics ; Extra View ; Female ; Gene Expression Regulation ; Genome, Insect ; heterochromatin ; Life Sciences ; Male ; piRNAs ; Quantitative Methods ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; RNA, Small Interfering - physiology ; transposable elements</subject><ispartof>Fly (Austin, Tex.), 2013-10, Vol.7 (4), p.237-241</ispartof><rights>Copyright © 2013 Landes Bioscience 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3</citedby><cites>FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3</cites><orcidid>0000-0002-7413-1850 ; 0000-0001-7709-2116 ; 0000-0001-8671-1599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896495/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896495/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24088599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01537139$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vanssay, Augustin</creatorcontrib><creatorcontrib>Bougé, Anne-Laure</creatorcontrib><creatorcontrib>Boivin, Antoine</creatorcontrib><creatorcontrib>Hermant, Catherine</creatorcontrib><creatorcontrib>Teysset, Laure</creatorcontrib><creatorcontrib>Delmarre, Valérie</creatorcontrib><creatorcontrib>Antoniewski, Christophe</creatorcontrib><creatorcontrib>Ronsseray, Stéphane</creatorcontrib><title>piRNAs and epigenetic conversion in Drosophila</title><title>Fly (Austin, Tex.)</title><addtitle>Fly (Austin)</addtitle><description>Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n &gt; 50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently-a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.</description><subject>Animals</subject><subject>Bioinformatics</subject><subject>cellular memory</subject><subject>Computer Science</subject><subject>Cytoplasm - metabolism</subject><subject>Drosophila melanogaster - genetics</subject><subject>Epigenesis, Genetic</subject><subject>epigenetics</subject><subject>Extra View</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Genome, Insect</subject><subject>heterochromatin</subject><subject>Life Sciences</subject><subject>Male</subject><subject>piRNAs</subject><subject>Quantitative Methods</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA, Small Interfering - physiology</subject><subject>transposable elements</subject><issn>1933-6934</issn><issn>1933-6942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNplkU1vEzEQhi0EoqVw4A-gPcIhwd-7viBFpaWVIpAQnK1Z7zhxtbEXexOUf8-mKYHCyaPx42dsv4S8ZnQumWbvfb-fc604f0LOmRFipo3kT0-1kGfkRSl3lKpaUfWcnHFJm0YZc07mQ_j6eVEqiF2FQ1hhxDG4yqW4w1xCilWI1cecShrWoYeX5JmHvuCrh_WCfL---nZ5M1t--XR7uVjOnOJ0nBnPhaaaexDGMY7gTGeMbBCYpNDUXHLXcgZCA2Ou7RBBGfRTyVDU0IoLcnv0dgnu7JDDBvLeJgj2vpHyykKeLtqjda1XWgpTsxakc9C2Hj3U0neguxYPrg9H17BtN9g5jGOG_pH08U4Ma7tKOysao6VRk-DdUbD-59jNYmkPPcqUqJkwOzaxbx-G5fRji2W0m1Ac9j1ETNtimZJMNEIo_kfrpu8tGf3Jzag95GqnXO19rhP75u83nMjfQU6APAIh-pQ38DPlvrMj7PuUfYboQrHif-8v27yxBA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>de Vanssay, Augustin</creator><creator>Bougé, Anne-Laure</creator><creator>Boivin, Antoine</creator><creator>Hermant, Catherine</creator><creator>Teysset, Laure</creator><creator>Delmarre, Valérie</creator><creator>Antoniewski, Christophe</creator><creator>Ronsseray, Stéphane</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7413-1850</orcidid><orcidid>https://orcid.org/0000-0001-7709-2116</orcidid><orcidid>https://orcid.org/0000-0001-8671-1599</orcidid></search><sort><creationdate>20131001</creationdate><title>piRNAs and epigenetic conversion in Drosophila</title><author>de Vanssay, Augustin ; Bougé, Anne-Laure ; Boivin, Antoine ; Hermant, Catherine ; Teysset, Laure ; Delmarre, Valérie ; Antoniewski, Christophe ; Ronsseray, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bioinformatics</topic><topic>cellular memory</topic><topic>Computer Science</topic><topic>Cytoplasm - metabolism</topic><topic>Drosophila melanogaster - genetics</topic><topic>Epigenesis, Genetic</topic><topic>epigenetics</topic><topic>Extra View</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Genome, Insect</topic><topic>heterochromatin</topic><topic>Life Sciences</topic><topic>Male</topic><topic>piRNAs</topic><topic>Quantitative Methods</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA, Small Interfering - physiology</topic><topic>transposable elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vanssay, Augustin</creatorcontrib><creatorcontrib>Bougé, Anne-Laure</creatorcontrib><creatorcontrib>Boivin, Antoine</creatorcontrib><creatorcontrib>Hermant, Catherine</creatorcontrib><creatorcontrib>Teysset, Laure</creatorcontrib><creatorcontrib>Delmarre, Valérie</creatorcontrib><creatorcontrib>Antoniewski, Christophe</creatorcontrib><creatorcontrib>Ronsseray, Stéphane</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Fly (Austin, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vanssay, Augustin</au><au>Bougé, Anne-Laure</au><au>Boivin, Antoine</au><au>Hermant, Catherine</au><au>Teysset, Laure</au><au>Delmarre, Valérie</au><au>Antoniewski, Christophe</au><au>Ronsseray, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>piRNAs and epigenetic conversion in Drosophila</atitle><jtitle>Fly (Austin, Tex.)</jtitle><addtitle>Fly (Austin)</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>237</spage><epage>241</epage><pages>237-241</pages><issn>1933-6934</issn><eissn>1933-6942</eissn><abstract>Transposable element (TE) activity is repressed in the Drosophila germline by Piwi-Interacting RNAs (piRNAs), a class of small non-coding RNAs. These piRNAs are produced by discrete genomic loci containing TE fragments. In a recent publication, we tested for the existence of a strict epigenetic induction of piRNA production capacity by a locus in the D. melanogaster genome. We used 2 lines carrying a transgenic 7-copy tandem cluster (P-lacZ-white) at the same genomic site. This cluster generates in both lines a local heterochromatic sector. One line (T-1) produces high levels of ovarian piRNAs homologous to the P-lacZ-white transgenes and shows a strong capacity to repress homologous sequences in trans, whereas the other line (BX2) is devoid of both of these capacities. The properties of these 2 lines are perfectly stable over generations. We have shown that the maternal transmission of a cytoplasm carrying piRNAs from the first line can confer to the inert transgenic locus of the second, a totally de novo capacity to produce high levels of piRNAs as well as the ability to induce homology-dependent silencing in trans. These new properties are stably inherited over generations (n &gt; 50). Furthermore, the converted locus has itself become able to convert an inert transgenic locus via cytoplasmic maternal inheritance. This results in a stable epigenetic conversion process, which can be performed recurrently-a phenomenon termed paramutation and discovered in Maize 60 y ago. Paramutation in Drosophila corresponds to the first stable paramutation in animals and provides a model system to investigate the epigenetically induced emergence of a piRNA-producing locus, a crucial step in epigenome shaping. In this Extra View, we discuss some additional functional aspects and the possible molecular mechanism of this piRNA-linked paramutation.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>24088599</pmid><doi>10.4161/fly.26522</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7413-1850</orcidid><orcidid>https://orcid.org/0000-0001-7709-2116</orcidid><orcidid>https://orcid.org/0000-0001-8671-1599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-6934
ispartof Fly (Austin, Tex.), 2013-10, Vol.7 (4), p.237-241
issn 1933-6934
1933-6942
language eng
recordid cdi_pubmed_primary_24088599
source PubMed Central
subjects Animals
Bioinformatics
cellular memory
Computer Science
Cytoplasm - metabolism
Drosophila melanogaster - genetics
Epigenesis, Genetic
epigenetics
Extra View
Female
Gene Expression Regulation
Genome, Insect
heterochromatin
Life Sciences
Male
piRNAs
Quantitative Methods
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
RNA, Small Interfering - physiology
transposable elements
title piRNAs and epigenetic conversion in Drosophila
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=piRNAs%20and%20epigenetic%20conversion%20in%20Drosophila&rft.jtitle=Fly%20(Austin,%20Tex.)&rft.au=de%20Vanssay,%20Augustin&rft.date=2013-10-01&rft.volume=7&rft.issue=4&rft.spage=237&rft.epage=241&rft.pages=237-241&rft.issn=1933-6934&rft.eissn=1933-6942&rft_id=info:doi/10.4161/fly.26522&rft_dat=%3Cproquest_pubme%3E1541383352%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-9f236062fa39c12eac9d9948ea140a87242cb21a36a11cbdeea59ef1cb1e37ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1541383352&rft_id=info:pmid/24088599&rfr_iscdi=true