Loading…

The opioid methadone induces a local anaesthetic-like inhibition of the cardiac Na⁺ channel, Na(v)1.5

Treatment with methadone is associated with severe cardiac arrhythmias, a side effect that seems to result from an inhibition of cardiac hERG K⁺ channels. However, several other opioids are inhibitors of voltage-gated Na⁺ channels. Considering the common assumption that an inhibition of the cardiac...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 2014-01, Vol.171 (2), p.427
Main Authors: Schulze, V, Stoetzer, C, O'Reilly, A O, Eberhardt, E, Foadi, N, Ahrens, J, Wegner, F, Lampert, A, de la Roche, J, Leffler, A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Treatment with methadone is associated with severe cardiac arrhythmias, a side effect that seems to result from an inhibition of cardiac hERG K⁺ channels. However, several other opioids are inhibitors of voltage-gated Na⁺ channels. Considering the common assumption that an inhibition of the cardiac Na⁺ channel Na(v)1.5, is the primary mechanism for local anaesthetic (LA)-induced cardiotoxicity, we hypothesized that methadone has LA-like properties leading to a modulation of Na(v)1.5 channels. The whole-cell patch clamp technique was applied to investigate the effects of methadone on wild-type and mutant human Na(v)1.5 channels expressed in HEK293 cells. A homology model of human Na(v)1.5 channels was used to perform automated ligand-docking studies. Methadone inhibited Na(v)1.5 channels in a state-dependent manner, that is, tonic block was stronger with inactivated channels than with resting channels and a use-dependent block at 10 Hz. Methadone induced a concentration-dependent shift of the voltage dependency of both fast and slow inactivation towards more hyperpolarized potentials, and impaired recovery from fast and slow inactivation. The LA-insensitive mutants N406K and F1760A exhibited reduced tonic and use-dependent block by methadone, and docking predictions positioned methadone in a cavity that was delimited by the residue F1760. Dextromethadone and levomethadone induced discrete stereo-selective effects on Na(v)1.5 channels. Methadone interacted with the LA-binding site to inhibit Na(v)1.5 channels. Our data suggest that these channels are a hitherto unrecognized molecular component contributing to cardiac arrhythmias induced by methadone.
ISSN:1476-5381
DOI:10.1111/bph.12465