Loading…
A Parallel Dual Matrix Method for Blind Signal Separation
A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Theref...
Saved in:
Published in: | Neural computation 2014-03, Vol.26 (3), p.592-610 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933 |
container_end_page | 610 |
container_issue | 3 |
container_start_page | 592 |
container_title | Neural computation |
container_volume | 26 |
creator | Zeng, T. J. Feng, Q. Y. |
description | A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Therefore, a number of undesired solutions are excluded, the search region is reduced, and the convergence efficiency of the algorithm is ultimately improved. Moreover, any parallel subalgorithm is proven to converge to a desired separating matrix only if its cost function converges to zero. Computer simulations indicate that the algorithm efficiently performs blind signal separation. |
doi_str_mv | 10.1162/NECO_a_00554 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24320846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3216700941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933</originalsourceid><addsrcrecordid>eNptkElPwzAQRi0EgrLcOKNIXDgQGK-xb5SySmWRAImb5cQOuEqT4iQI-PWEtixCPc3he_Nm9CG0jeEAY0EOr08HN9poAM7ZEuphTiGWUj4uox5IpeJEiGQNrdf1CAAEBr6K1gijBCQTPaT60a0JpihcEZ20poiuTBP8W3TlmufKRnkVouPClza6809lF9-5SYc3vio30UpuitptzecGejg7vR9cxMOb88tBfxhnDFQTUy5EzjNrhTEqB0udpWmS05RJq6QEYSjHwiaGMsF5ygiTWZYSAKKszBSlG2hv5p2E6qV1daPHvs5cUZjSVW2tMVMKEyaSpEN3_6Gjqg3d21MqIZKo5Eu4P6OyUNV1cLmeBD824V1j0F-V6r-VdvjOXNqmY2d_4O8Ofx8c-78HF7uOFqCly6pXIjzVFAgnoAkQ3G1rUPrDT6b5j-ITN56QaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497282973</pqid></control><display><type>article</type><title>A Parallel Dual Matrix Method for Blind Signal Separation</title><source>MIT Press Journals</source><creator>Zeng, T. J. ; Feng, Q. Y.</creator><creatorcontrib>Zeng, T. J. ; Feng, Q. Y.</creatorcontrib><description>A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Therefore, a number of undesired solutions are excluded, the search region is reduced, and the convergence efficiency of the algorithm is ultimately improved. Moreover, any parallel subalgorithm is proven to converge to a desired separating matrix only if its cost function converges to zero. Computer simulations indicate that the algorithm efficiently performs blind signal separation.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00554</identifier><identifier>PMID: 24320846</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Computer simulation ; Letters ; Matrix ; Neurosciences ; Numerical analysis ; Signaling</subject><ispartof>Neural computation, 2014-03, Vol.26 (3), p.592-610</ispartof><rights>Copyright MIT Press Journals Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933</citedby><cites>FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00554$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24320846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, T. J.</creatorcontrib><creatorcontrib>Feng, Q. Y.</creatorcontrib><title>A Parallel Dual Matrix Method for Blind Signal Separation</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Therefore, a number of undesired solutions are excluded, the search region is reduced, and the convergence efficiency of the algorithm is ultimately improved. Moreover, any parallel subalgorithm is proven to converge to a desired separating matrix only if its cost function converges to zero. Computer simulations indicate that the algorithm efficiently performs blind signal separation.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Letters</subject><subject>Matrix</subject><subject>Neurosciences</subject><subject>Numerical analysis</subject><subject>Signaling</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkElPwzAQRi0EgrLcOKNIXDgQGK-xb5SySmWRAImb5cQOuEqT4iQI-PWEtixCPc3he_Nm9CG0jeEAY0EOr08HN9poAM7ZEuphTiGWUj4uox5IpeJEiGQNrdf1CAAEBr6K1gijBCQTPaT60a0JpihcEZ20poiuTBP8W3TlmufKRnkVouPClza6809lF9-5SYc3vio30UpuitptzecGejg7vR9cxMOb88tBfxhnDFQTUy5EzjNrhTEqB0udpWmS05RJq6QEYSjHwiaGMsF5ygiTWZYSAKKszBSlG2hv5p2E6qV1daPHvs5cUZjSVW2tMVMKEyaSpEN3_6Gjqg3d21MqIZKo5Eu4P6OyUNV1cLmeBD824V1j0F-V6r-VdvjOXNqmY2d_4O8Ofx8c-78HF7uOFqCly6pXIjzVFAgnoAkQ3G1rUPrDT6b5j-ITN56QaA</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zeng, T. J.</creator><creator>Feng, Q. Y.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20140301</creationdate><title>A Parallel Dual Matrix Method for Blind Signal Separation</title><author>Zeng, T. J. ; Feng, Q. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Letters</topic><topic>Matrix</topic><topic>Neurosciences</topic><topic>Numerical analysis</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, T. J.</creatorcontrib><creatorcontrib>Feng, Q. Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, T. J.</au><au>Feng, Q. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parallel Dual Matrix Method for Blind Signal Separation</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>26</volume><issue>3</issue><spage>592</spage><epage>610</epage><pages>592-610</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>A parallel dual matrix method that considers all cases of numerical relations between a mixing matrix and a separating matrix is proposed in this letter. Different constrained terms are used to construct cost function for every subalgorithm. These constrained terms reflect numerical relation. Therefore, a number of undesired solutions are excluded, the search region is reduced, and the convergence efficiency of the algorithm is ultimately improved. Moreover, any parallel subalgorithm is proven to converge to a desired separating matrix only if its cost function converges to zero. Computer simulations indicate that the algorithm efficiently performs blind signal separation.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>24320846</pmid><doi>10.1162/NECO_a_00554</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2014-03, Vol.26 (3), p.592-610 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pubmed_primary_24320846 |
source | MIT Press Journals |
subjects | Algorithms Computer simulation Letters Matrix Neurosciences Numerical analysis Signaling |
title | A Parallel Dual Matrix Method for Blind Signal Separation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parallel%20Dual%20Matrix%20Method%20for%20Blind%20Signal%20Separation&rft.jtitle=Neural%20computation&rft.au=Zeng,%20T.%20J.&rft.date=2014-03-01&rft.volume=26&rft.issue=3&rft.spage=592&rft.epage=610&rft.pages=592-610&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00554&rft_dat=%3Cproquest_pubme%3E3216700941%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-3566f5cdd6aa9f0d3ed3b7f3b48d98806a3516d7a34655b4248ccb20029d8c933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497282973&rft_id=info:pmid/24320846&rfr_iscdi=true |