Loading…

β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer

Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and...

Full description

Saved in:
Bibliographic Details
Published in:Science signaling 2014-02, Vol.7 (312), p.ra15
Main Authors: Truong, Hoa H, Xiong, Jiangling, Ghotra, Veerander P S, Nirmala, Ella, Haazen, Lizette, Le Dévédec, Sylvia E, Balcioğlu, Hayri E, He, Shuning, Snaar-Jagalska, B Ewa, Vreugdenhil, Erno, Meerman, John H N, van de Water, Bob, Danen, Erik H J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 312
container_start_page ra15
container_title Science signaling
container_volume 7
creator Truong, Hoa H
Xiong, Jiangling
Ghotra, Veerander P S
Nirmala, Ella
Haazen, Lizette
Le Dévédec, Sylvia E
Balcioğlu, Hayri E
He, Shuning
Snaar-Jagalska, B Ewa
Vreugdenhil, Erno
Meerman, John H N
van de Water, Bob
Danen, Erik H J
description Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs. When cultured in three-dimensional ECM scaffolds, antibodies that blocked β1 integrin function or knockdown of β1 switched the migratory behavior of human and mouse E-cadherin-positive triple-negative breast cancer (TNBC) cells from collective to single cell movement. This switch involved activation of the transforming growth factor-β (TGFβ) signaling network that led to a shift in the balance between miR-200 microRNAs and the transcription factor zinc finger E-box-binding homeobox 2 (ZEB2), resulting in suppressed transcription of the gene encoding E-cadherin. Reducing the abundance of a TGFβ receptor, restoring the ZEB/miR-200 balance, or increasing the abundance of E-cadherin reestablished cohesion in β1 integrin-deficient cells and reduced dissemination to the lungs without affecting growth of the primary tumor. These findings reveal that β1 integrins control a signaling network that promotes an epithelial phenotype and suppresses dissemination and indicate that targeting β1 integrins may have undesirable effects in TNBC.
doi_str_mv 10.1126/scisignal.2004751
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_24518294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24518294</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-92c27fd6d43e5c14e3edf6bb87b3d08f8c78b122f1b2ee77632520674cb327333</originalsourceid><addsrcrecordid>eNo10EtOwzAQBmALCdFSOAAb5Au4xHYSJ0uo0oJUCQmVDZvKdiaJIS_ZLhXH4Co9SM-Eea3-mc03-gehKxrNKWXpjdPGmbqX7ZxFUSwSeoKmNOeC5DROJujcudcoSilj-RmasDihGcvjKfo8Hig2vYfamj4MjVHGm6HH0BptvMMSj3bowEvnpTcau73xusG-scOu_k7Am9XyeCCdeSLhNHkp7nAPfj_Yt-DhgmhZNhB0Mg4u2O-AvTVjC6SHWv7sykLgsZa9BnuBTivZOrj8yxl6XhabxT1ZP64eFrdrMoa6nuRMM1GVaRlzSDSNgUNZpUplQvEyyqpMi0yFuhVVDECIlLOERamIteJMcM5n6PrXHXeqg3I7WtNJ-7H9_w3_AvB8abU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer</title><source>Alma/SFX Local Collection</source><creator>Truong, Hoa H ; Xiong, Jiangling ; Ghotra, Veerander P S ; Nirmala, Ella ; Haazen, Lizette ; Le Dévédec, Sylvia E ; Balcioğlu, Hayri E ; He, Shuning ; Snaar-Jagalska, B Ewa ; Vreugdenhil, Erno ; Meerman, John H N ; van de Water, Bob ; Danen, Erik H J</creator><creatorcontrib>Truong, Hoa H ; Xiong, Jiangling ; Ghotra, Veerander P S ; Nirmala, Ella ; Haazen, Lizette ; Le Dévédec, Sylvia E ; Balcioğlu, Hayri E ; He, Shuning ; Snaar-Jagalska, B Ewa ; Vreugdenhil, Erno ; Meerman, John H N ; van de Water, Bob ; Danen, Erik H J</creatorcontrib><description>Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs. When cultured in three-dimensional ECM scaffolds, antibodies that blocked β1 integrin function or knockdown of β1 switched the migratory behavior of human and mouse E-cadherin-positive triple-negative breast cancer (TNBC) cells from collective to single cell movement. This switch involved activation of the transforming growth factor-β (TGFβ) signaling network that led to a shift in the balance between miR-200 microRNAs and the transcription factor zinc finger E-box-binding homeobox 2 (ZEB2), resulting in suppressed transcription of the gene encoding E-cadherin. Reducing the abundance of a TGFβ receptor, restoring the ZEB/miR-200 balance, or increasing the abundance of E-cadherin reestablished cohesion in β1 integrin-deficient cells and reduced dissemination to the lungs without affecting growth of the primary tumor. These findings reveal that β1 integrins control a signaling network that promotes an epithelial phenotype and suppresses dissemination and indicate that targeting β1 integrins may have undesirable effects in TNBC.</description><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.2004751</identifier><identifier>PMID: 24518294</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Blotting, Western ; Cadherins - metabolism ; Cell Line, Tumor ; Cell Movement - physiology ; DNA-Binding Proteins - genetics ; Extracellular Matrix - metabolism ; Flow Cytometry ; Gene Silencing ; Homeodomain Proteins - metabolism ; Humans ; Immunohistochemistry ; Integrin beta1 - genetics ; Integrin beta1 - metabolism ; Luciferases ; Lung Neoplasms - secondary ; Mice ; Mice, Knockout ; MicroRNAs - metabolism ; Neoplasm Metastasis - physiopathology ; Repressor Proteins - metabolism ; Signal Transduction - physiology ; Time-Lapse Imaging ; Transforming Growth Factor beta - metabolism ; Triple Negative Breast Neoplasms - metabolism ; Triple Negative Breast Neoplasms - physiopathology ; Zebrafish ; Zinc Finger E-box Binding Homeobox 2</subject><ispartof>Science signaling, 2014-02, Vol.7 (312), p.ra15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24518294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Truong, Hoa H</creatorcontrib><creatorcontrib>Xiong, Jiangling</creatorcontrib><creatorcontrib>Ghotra, Veerander P S</creatorcontrib><creatorcontrib>Nirmala, Ella</creatorcontrib><creatorcontrib>Haazen, Lizette</creatorcontrib><creatorcontrib>Le Dévédec, Sylvia E</creatorcontrib><creatorcontrib>Balcioğlu, Hayri E</creatorcontrib><creatorcontrib>He, Shuning</creatorcontrib><creatorcontrib>Snaar-Jagalska, B Ewa</creatorcontrib><creatorcontrib>Vreugdenhil, Erno</creatorcontrib><creatorcontrib>Meerman, John H N</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>Danen, Erik H J</creatorcontrib><title>β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs. When cultured in three-dimensional ECM scaffolds, antibodies that blocked β1 integrin function or knockdown of β1 switched the migratory behavior of human and mouse E-cadherin-positive triple-negative breast cancer (TNBC) cells from collective to single cell movement. This switch involved activation of the transforming growth factor-β (TGFβ) signaling network that led to a shift in the balance between miR-200 microRNAs and the transcription factor zinc finger E-box-binding homeobox 2 (ZEB2), resulting in suppressed transcription of the gene encoding E-cadherin. Reducing the abundance of a TGFβ receptor, restoring the ZEB/miR-200 balance, or increasing the abundance of E-cadherin reestablished cohesion in β1 integrin-deficient cells and reduced dissemination to the lungs without affecting growth of the primary tumor. These findings reveal that β1 integrins control a signaling network that promotes an epithelial phenotype and suppresses dissemination and indicate that targeting β1 integrins may have undesirable effects in TNBC.</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cadherins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - physiology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Extracellular Matrix - metabolism</subject><subject>Flow Cytometry</subject><subject>Gene Silencing</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Integrin beta1 - genetics</subject><subject>Integrin beta1 - metabolism</subject><subject>Luciferases</subject><subject>Lung Neoplasms - secondary</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>MicroRNAs - metabolism</subject><subject>Neoplasm Metastasis - physiopathology</subject><subject>Repressor Proteins - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Time-Lapse Imaging</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Triple Negative Breast Neoplasms - metabolism</subject><subject>Triple Negative Breast Neoplasms - physiopathology</subject><subject>Zebrafish</subject><subject>Zinc Finger E-box Binding Homeobox 2</subject><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo10EtOwzAQBmALCdFSOAAb5Au4xHYSJ0uo0oJUCQmVDZvKdiaJIS_ZLhXH4Co9SM-Eea3-mc03-gehKxrNKWXpjdPGmbqX7ZxFUSwSeoKmNOeC5DROJujcudcoSilj-RmasDihGcvjKfo8Hig2vYfamj4MjVHGm6HH0BptvMMSj3bowEvnpTcau73xusG-scOu_k7Am9XyeCCdeSLhNHkp7nAPfj_Yt-DhgmhZNhB0Mg4u2O-AvTVjC6SHWv7sykLgsZa9BnuBTivZOrj8yxl6XhabxT1ZP64eFrdrMoa6nuRMM1GVaRlzSDSNgUNZpUplQvEyyqpMi0yFuhVVDECIlLOERamIteJMcM5n6PrXHXeqg3I7WtNJ-7H9_w3_AvB8abU</recordid><startdate>20140211</startdate><enddate>20140211</enddate><creator>Truong, Hoa H</creator><creator>Xiong, Jiangling</creator><creator>Ghotra, Veerander P S</creator><creator>Nirmala, Ella</creator><creator>Haazen, Lizette</creator><creator>Le Dévédec, Sylvia E</creator><creator>Balcioğlu, Hayri E</creator><creator>He, Shuning</creator><creator>Snaar-Jagalska, B Ewa</creator><creator>Vreugdenhil, Erno</creator><creator>Meerman, John H N</creator><creator>van de Water, Bob</creator><creator>Danen, Erik H J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20140211</creationdate><title>β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer</title><author>Truong, Hoa H ; Xiong, Jiangling ; Ghotra, Veerander P S ; Nirmala, Ella ; Haazen, Lizette ; Le Dévédec, Sylvia E ; Balcioğlu, Hayri E ; He, Shuning ; Snaar-Jagalska, B Ewa ; Vreugdenhil, Erno ; Meerman, John H N ; van de Water, Bob ; Danen, Erik H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-92c27fd6d43e5c14e3edf6bb87b3d08f8c78b122f1b2ee77632520674cb327333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cadherins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - physiology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Extracellular Matrix - metabolism</topic><topic>Flow Cytometry</topic><topic>Gene Silencing</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Integrin beta1 - genetics</topic><topic>Integrin beta1 - metabolism</topic><topic>Luciferases</topic><topic>Lung Neoplasms - secondary</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>MicroRNAs - metabolism</topic><topic>Neoplasm Metastasis - physiopathology</topic><topic>Repressor Proteins - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Time-Lapse Imaging</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Triple Negative Breast Neoplasms - metabolism</topic><topic>Triple Negative Breast Neoplasms - physiopathology</topic><topic>Zebrafish</topic><topic>Zinc Finger E-box Binding Homeobox 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truong, Hoa H</creatorcontrib><creatorcontrib>Xiong, Jiangling</creatorcontrib><creatorcontrib>Ghotra, Veerander P S</creatorcontrib><creatorcontrib>Nirmala, Ella</creatorcontrib><creatorcontrib>Haazen, Lizette</creatorcontrib><creatorcontrib>Le Dévédec, Sylvia E</creatorcontrib><creatorcontrib>Balcioğlu, Hayri E</creatorcontrib><creatorcontrib>He, Shuning</creatorcontrib><creatorcontrib>Snaar-Jagalska, B Ewa</creatorcontrib><creatorcontrib>Vreugdenhil, Erno</creatorcontrib><creatorcontrib>Meerman, John H N</creatorcontrib><creatorcontrib>van de Water, Bob</creatorcontrib><creatorcontrib>Danen, Erik H J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truong, Hoa H</au><au>Xiong, Jiangling</au><au>Ghotra, Veerander P S</au><au>Nirmala, Ella</au><au>Haazen, Lizette</au><au>Le Dévédec, Sylvia E</au><au>Balcioğlu, Hayri E</au><au>He, Shuning</au><au>Snaar-Jagalska, B Ewa</au><au>Vreugdenhil, Erno</au><au>Meerman, John H N</au><au>van de Water, Bob</au><au>Danen, Erik H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2014-02-11</date><risdate>2014</risdate><volume>7</volume><issue>312</issue><spage>ra15</spage><pages>ra15-</pages><eissn>1937-9145</eissn><abstract>Interactions with the extracellular matrix (ECM) through integrin adhesion receptors provide cancer cells with physical and chemical cues that act together with growth factors to support survival and proliferation. Antagonists that target integrins containing the β1 subunit inhibit tumor growth and sensitize cells to irradiation or cytotoxic chemotherapy in preclinical breast cancer models and are under clinical investigation. We found that the loss of β1 integrins attenuated breast tumor growth but markedly enhanced tumor cell dissemination to the lungs. When cultured in three-dimensional ECM scaffolds, antibodies that blocked β1 integrin function or knockdown of β1 switched the migratory behavior of human and mouse E-cadherin-positive triple-negative breast cancer (TNBC) cells from collective to single cell movement. This switch involved activation of the transforming growth factor-β (TGFβ) signaling network that led to a shift in the balance between miR-200 microRNAs and the transcription factor zinc finger E-box-binding homeobox 2 (ZEB2), resulting in suppressed transcription of the gene encoding E-cadherin. Reducing the abundance of a TGFβ receptor, restoring the ZEB/miR-200 balance, or increasing the abundance of E-cadherin reestablished cohesion in β1 integrin-deficient cells and reduced dissemination to the lungs without affecting growth of the primary tumor. These findings reveal that β1 integrins control a signaling network that promotes an epithelial phenotype and suppresses dissemination and indicate that targeting β1 integrins may have undesirable effects in TNBC.</abstract><cop>United States</cop><pmid>24518294</pmid><doi>10.1126/scisignal.2004751</doi></addata></record>
fulltext fulltext
identifier EISSN: 1937-9145
ispartof Science signaling, 2014-02, Vol.7 (312), p.ra15
issn 1937-9145
language eng
recordid cdi_pubmed_primary_24518294
source Alma/SFX Local Collection
subjects Animals
Blotting, Western
Cadherins - metabolism
Cell Line, Tumor
Cell Movement - physiology
DNA-Binding Proteins - genetics
Extracellular Matrix - metabolism
Flow Cytometry
Gene Silencing
Homeodomain Proteins - metabolism
Humans
Immunohistochemistry
Integrin beta1 - genetics
Integrin beta1 - metabolism
Luciferases
Lung Neoplasms - secondary
Mice
Mice, Knockout
MicroRNAs - metabolism
Neoplasm Metastasis - physiopathology
Repressor Proteins - metabolism
Signal Transduction - physiology
Time-Lapse Imaging
Transforming Growth Factor beta - metabolism
Triple Negative Breast Neoplasms - metabolism
Triple Negative Breast Neoplasms - physiopathology
Zebrafish
Zinc Finger E-box Binding Homeobox 2
title β1 integrin inhibition elicits a prometastatic switch through the TGFβ-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B21%20integrin%20inhibition%20elicits%20a%20prometastatic%20switch%20through%20the%20TGF%CE%B2-miR-200-ZEB%20network%20in%20E-cadherin-positive%20triple-negative%20breast%20cancer&rft.jtitle=Science%20signaling&rft.au=Truong,%20Hoa%20H&rft.date=2014-02-11&rft.volume=7&rft.issue=312&rft.spage=ra15&rft.pages=ra15-&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.2004751&rft_dat=%3Cpubmed%3E24518294%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p126t-92c27fd6d43e5c14e3edf6bb87b3d08f8c78b122f1b2ee77632520674cb327333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24518294&rfr_iscdi=true