Loading…
Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production
Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle...
Saved in:
Published in: | Free radical research 2014-06, Vol.48 (6), p.684-693 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913 |
container_end_page | 693 |
container_issue | 6 |
container_start_page | 684 |
container_title | Free radical research |
container_volume | 48 |
creator | Scandroglio, F. Tórtora, V. Radi, R. Castro, L. |
description | Abstract
The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain. |
doi_str_mv | 10.3109/10715762.2014.900175 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24601712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1523403363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERUvhDRDKkk0G_yVuWIBQxZ_UqhtYWzf2DePKsQfbAeYpeGUcpq1EF13Z8v3OOdY9hLxgdCMYHV4zqliner7hlMnNQClT3SNywigfWi4VfbzeFWtX5pg8zfm6IkJ26gk55rKvOOMn5M8lFhijd6YxMZQUfQMB_D673MSpmV2JZhuDTQ7qpCKuQMY3jQuTXzAYbOJPTE3CvHMJiouh6u09XV52mOJvZ_HfcLu3KX7H0Ny97lK0i1nVz8jRBD7j85vzlHz7-OHr-ef24urTl_P3F62R7Ky0QjHJ7NDTzpzhNIoeYaJqGkDaztrRgDR2FIaPjDHFlRL9IKjooRsoyG5g4pS8OvjW6B8L5qJnlw16DwHjkjXruJBUiF5UVB5Qk2LOCSe9S26GtNeM6rUKfVuFXqvQhyqq7OVNwjLOaO9Et7uvwLsDUHcZ0wy_YvJWF9j7mKYEwbi82j8Y8fY_hy2CL1sDCfV1XFLtMT_8x7_IzK9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523403363</pqid></control><display><type>article</type><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</creator><creatorcontrib>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</creatorcontrib><description>Abstract
The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</description><identifier>ISSN: 1071-5762</identifier><identifier>EISSN: 1029-2470</identifier><identifier>DOI: 10.3109/10715762.2014.900175</identifier><identifier>PMID: 24601712</identifier><language>eng</language><publisher>England: Informa Healthcare</publisher><subject>aconitase 2 ; Aconitate Hydratase - antagonists & inhibitors ; Aconitate Hydratase - biosynthesis ; Animals ; Brain - metabolism ; Citric Acid Cycle - physiology ; Electron Transport - physiology ; free radicals ; hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Membrane Potential, Mitochondrial - physiology ; metabolic control ; mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Myocardium - metabolism ; Oxidative Stress ; Oxygen Consumption - physiology ; Rats ; Rats, Wistar ; superoxide radical ; Superoxides - metabolism</subject><ispartof>Free radical research, 2014-06, Vol.48 (6), p.684-693</ispartof><rights>2014 Informa UK, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</citedby><cites>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24601712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scandroglio, F.</creatorcontrib><creatorcontrib>Tórtora, V.</creatorcontrib><creatorcontrib>Radi, R.</creatorcontrib><creatorcontrib>Castro, L.</creatorcontrib><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><title>Free radical research</title><addtitle>Free Radic Res</addtitle><description>Abstract
The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</description><subject>aconitase 2</subject><subject>Aconitate Hydratase - antagonists & inhibitors</subject><subject>Aconitate Hydratase - biosynthesis</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Citric Acid Cycle - physiology</subject><subject>Electron Transport - physiology</subject><subject>free radicals</subject><subject>hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>metabolic control</subject><subject>mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Oxidative Stress</subject><subject>Oxygen Consumption - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>superoxide radical</subject><subject>Superoxides - metabolism</subject><issn>1071-5762</issn><issn>1029-2470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS1ERUvhDRDKkk0G_yVuWIBQxZ_UqhtYWzf2DePKsQfbAeYpeGUcpq1EF13Z8v3OOdY9hLxgdCMYHV4zqliner7hlMnNQClT3SNywigfWi4VfbzeFWtX5pg8zfm6IkJ26gk55rKvOOMn5M8lFhijd6YxMZQUfQMB_D673MSpmV2JZhuDTQ7qpCKuQMY3jQuTXzAYbOJPTE3CvHMJiouh6u09XV52mOJvZ_HfcLu3KX7H0Ny97lK0i1nVz8jRBD7j85vzlHz7-OHr-ef24urTl_P3F62R7Ky0QjHJ7NDTzpzhNIoeYaJqGkDaztrRgDR2FIaPjDHFlRL9IKjooRsoyG5g4pS8OvjW6B8L5qJnlw16DwHjkjXruJBUiF5UVB5Qk2LOCSe9S26GtNeM6rUKfVuFXqvQhyqq7OVNwjLOaO9Et7uvwLsDUHcZ0wy_YvJWF9j7mKYEwbi82j8Y8fY_hy2CL1sDCfV1XFLtMT_8x7_IzK9b</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Scandroglio, F.</creator><creator>Tórtora, V.</creator><creator>Radi, R.</creator><creator>Castro, L.</creator><general>Informa Healthcare</general><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><author>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>aconitase 2</topic><topic>Aconitate Hydratase - antagonists & inhibitors</topic><topic>Aconitate Hydratase - biosynthesis</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Citric Acid Cycle - physiology</topic><topic>Electron Transport - physiology</topic><topic>free radicals</topic><topic>hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>metabolic control</topic><topic>mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Oxidative Stress</topic><topic>Oxygen Consumption - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>superoxide radical</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scandroglio, F.</creatorcontrib><creatorcontrib>Tórtora, V.</creatorcontrib><creatorcontrib>Radi, R.</creatorcontrib><creatorcontrib>Castro, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scandroglio, F.</au><au>Tórtora, V.</au><au>Radi, R.</au><au>Castro, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</atitle><jtitle>Free radical research</jtitle><addtitle>Free Radic Res</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>48</volume><issue>6</issue><spage>684</spage><epage>693</epage><pages>684-693</pages><issn>1071-5762</issn><eissn>1029-2470</eissn><abstract>Abstract
The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</abstract><cop>England</cop><pub>Informa Healthcare</pub><pmid>24601712</pmid><doi>10.3109/10715762.2014.900175</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1071-5762 |
ispartof | Free radical research, 2014-06, Vol.48 (6), p.684-693 |
issn | 1071-5762 1029-2470 |
language | eng |
recordid | cdi_pubmed_primary_24601712 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | aconitase 2 Aconitate Hydratase - antagonists & inhibitors Aconitate Hydratase - biosynthesis Animals Brain - metabolism Citric Acid Cycle - physiology Electron Transport - physiology free radicals hydrogen peroxide Hydrogen Peroxide - metabolism Membrane Potential, Mitochondrial - physiology metabolic control mitochondria Mitochondria - enzymology Mitochondria - metabolism Myocardium - metabolism Oxidative Stress Oxygen Consumption - physiology Rats Rats, Wistar superoxide radical Superoxides - metabolism |
title | Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20control%20analysis%20of%20mitochondrial%20aconitase:%20influence%20over%20respiration%20and%20mitochondrial%20superoxide%20and%20hydrogen%20peroxide%20production&rft.jtitle=Free%20radical%20research&rft.au=Scandroglio,%20F.&rft.date=2014-06-01&rft.volume=48&rft.issue=6&rft.spage=684&rft.epage=693&rft.pages=684-693&rft.issn=1071-5762&rft.eissn=1029-2470&rft_id=info:doi/10.3109/10715762.2014.900175&rft_dat=%3Cproquest_pubme%3E1523403363%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1523403363&rft_id=info:pmid/24601712&rfr_iscdi=true |