Loading…

Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production

Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle...

Full description

Saved in:
Bibliographic Details
Published in:Free radical research 2014-06, Vol.48 (6), p.684-693
Main Authors: Scandroglio, F., Tórtora, V., Radi, R., Castro, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913
cites cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913
container_end_page 693
container_issue 6
container_start_page 684
container_title Free radical research
container_volume 48
creator Scandroglio, F.
Tórtora, V.
Radi, R.
Castro, L.
description Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.
doi_str_mv 10.3109/10715762.2014.900175
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24601712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1523403363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERUvhDRDKkk0G_yVuWIBQxZ_UqhtYWzf2DePKsQfbAeYpeGUcpq1EF13Z8v3OOdY9hLxgdCMYHV4zqliner7hlMnNQClT3SNywigfWi4VfbzeFWtX5pg8zfm6IkJ26gk55rKvOOMn5M8lFhijd6YxMZQUfQMB_D673MSpmV2JZhuDTQ7qpCKuQMY3jQuTXzAYbOJPTE3CvHMJiouh6u09XV52mOJvZ_HfcLu3KX7H0Ny97lK0i1nVz8jRBD7j85vzlHz7-OHr-ef24urTl_P3F62R7Ky0QjHJ7NDTzpzhNIoeYaJqGkDaztrRgDR2FIaPjDHFlRL9IKjooRsoyG5g4pS8OvjW6B8L5qJnlw16DwHjkjXruJBUiF5UVB5Qk2LOCSe9S26GtNeM6rUKfVuFXqvQhyqq7OVNwjLOaO9Et7uvwLsDUHcZ0wy_YvJWF9j7mKYEwbi82j8Y8fY_hy2CL1sDCfV1XFLtMT_8x7_IzK9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523403363</pqid></control><display><type>article</type><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</creator><creatorcontrib>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</creatorcontrib><description>Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (&gt; 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</description><identifier>ISSN: 1071-5762</identifier><identifier>EISSN: 1029-2470</identifier><identifier>DOI: 10.3109/10715762.2014.900175</identifier><identifier>PMID: 24601712</identifier><language>eng</language><publisher>England: Informa Healthcare</publisher><subject>aconitase 2 ; Aconitate Hydratase - antagonists &amp; inhibitors ; Aconitate Hydratase - biosynthesis ; Animals ; Brain - metabolism ; Citric Acid Cycle - physiology ; Electron Transport - physiology ; free radicals ; hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Membrane Potential, Mitochondrial - physiology ; metabolic control ; mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Myocardium - metabolism ; Oxidative Stress ; Oxygen Consumption - physiology ; Rats ; Rats, Wistar ; superoxide radical ; Superoxides - metabolism</subject><ispartof>Free radical research, 2014-06, Vol.48 (6), p.684-693</ispartof><rights>2014 Informa UK, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</citedby><cites>FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24601712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scandroglio, F.</creatorcontrib><creatorcontrib>Tórtora, V.</creatorcontrib><creatorcontrib>Radi, R.</creatorcontrib><creatorcontrib>Castro, L.</creatorcontrib><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><title>Free radical research</title><addtitle>Free Radic Res</addtitle><description>Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (&gt; 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</description><subject>aconitase 2</subject><subject>Aconitate Hydratase - antagonists &amp; inhibitors</subject><subject>Aconitate Hydratase - biosynthesis</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Citric Acid Cycle - physiology</subject><subject>Electron Transport - physiology</subject><subject>free radicals</subject><subject>hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>metabolic control</subject><subject>mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Oxidative Stress</subject><subject>Oxygen Consumption - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>superoxide radical</subject><subject>Superoxides - metabolism</subject><issn>1071-5762</issn><issn>1029-2470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS1ERUvhDRDKkk0G_yVuWIBQxZ_UqhtYWzf2DePKsQfbAeYpeGUcpq1EF13Z8v3OOdY9hLxgdCMYHV4zqliner7hlMnNQClT3SNywigfWi4VfbzeFWtX5pg8zfm6IkJ26gk55rKvOOMn5M8lFhijd6YxMZQUfQMB_D673MSpmV2JZhuDTQ7qpCKuQMY3jQuTXzAYbOJPTE3CvHMJiouh6u09XV52mOJvZ_HfcLu3KX7H0Ny97lK0i1nVz8jRBD7j85vzlHz7-OHr-ef24urTl_P3F62R7Ky0QjHJ7NDTzpzhNIoeYaJqGkDaztrRgDR2FIaPjDHFlRL9IKjooRsoyG5g4pS8OvjW6B8L5qJnlw16DwHjkjXruJBUiF5UVB5Qk2LOCSe9S26GtNeM6rUKfVuFXqvQhyqq7OVNwjLOaO9Et7uvwLsDUHcZ0wy_YvJWF9j7mKYEwbi82j8Y8fY_hy2CL1sDCfV1XFLtMT_8x7_IzK9b</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Scandroglio, F.</creator><creator>Tórtora, V.</creator><creator>Radi, R.</creator><creator>Castro, L.</creator><general>Informa Healthcare</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</title><author>Scandroglio, F. ; Tórtora, V. ; Radi, R. ; Castro, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>aconitase 2</topic><topic>Aconitate Hydratase - antagonists &amp; inhibitors</topic><topic>Aconitate Hydratase - biosynthesis</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Citric Acid Cycle - physiology</topic><topic>Electron Transport - physiology</topic><topic>free radicals</topic><topic>hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>metabolic control</topic><topic>mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Oxidative Stress</topic><topic>Oxygen Consumption - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>superoxide radical</topic><topic>Superoxides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scandroglio, F.</creatorcontrib><creatorcontrib>Tórtora, V.</creatorcontrib><creatorcontrib>Radi, R.</creatorcontrib><creatorcontrib>Castro, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scandroglio, F.</au><au>Tórtora, V.</au><au>Radi, R.</au><au>Castro, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production</atitle><jtitle>Free radical research</jtitle><addtitle>Free Radic Res</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>48</volume><issue>6</issue><spage>684</spage><epage>693</epage><pages>684-693</pages><issn>1071-5762</issn><eissn>1029-2470</eissn><abstract>Abstract The Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (&gt; 0.95). Aconitase-specific activity varied widely among tissues examined from ˜60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●− and H2O2 formation by the respiratory chain.</abstract><cop>England</cop><pub>Informa Healthcare</pub><pmid>24601712</pmid><doi>10.3109/10715762.2014.900175</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-5762
ispartof Free radical research, 2014-06, Vol.48 (6), p.684-693
issn 1071-5762
1029-2470
language eng
recordid cdi_pubmed_primary_24601712
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects aconitase 2
Aconitate Hydratase - antagonists & inhibitors
Aconitate Hydratase - biosynthesis
Animals
Brain - metabolism
Citric Acid Cycle - physiology
Electron Transport - physiology
free radicals
hydrogen peroxide
Hydrogen Peroxide - metabolism
Membrane Potential, Mitochondrial - physiology
metabolic control
mitochondria
Mitochondria - enzymology
Mitochondria - metabolism
Myocardium - metabolism
Oxidative Stress
Oxygen Consumption - physiology
Rats
Rats, Wistar
superoxide radical
Superoxides - metabolism
title Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20control%20analysis%20of%20mitochondrial%20aconitase:%20influence%20over%20respiration%20and%20mitochondrial%20superoxide%20and%20hydrogen%20peroxide%20production&rft.jtitle=Free%20radical%20research&rft.au=Scandroglio,%20F.&rft.date=2014-06-01&rft.volume=48&rft.issue=6&rft.spage=684&rft.epage=693&rft.pages=684-693&rft.issn=1071-5762&rft.eissn=1029-2470&rft_id=info:doi/10.3109/10715762.2014.900175&rft_dat=%3Cproquest_pubme%3E1523403363%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-37141d9605c8efb36eaf07f9a4d5ddbca4cdb3c2b11172773693036a590a45913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1523403363&rft_id=info:pmid/24601712&rfr_iscdi=true