Loading…
Contributions of σ(B) and PrfA to Listeria monocytogenes salt stress under food relevant conditions
Listeria monocytogenes is well known to survive and grow under several stress conditions, including salt stress, which is important for growth in certain foods as well as for host infection. To characterize the contributions, to salt stress response, of transcriptional regulators important for stres...
Saved in:
Published in: | International journal of food microbiology 2014-05, Vol.177, p.98 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Listeria monocytogenes is well known to survive and grow under several stress conditions, including salt stress, which is important for growth in certain foods as well as for host infection. To characterize the contributions, to salt stress response, of transcriptional regulators important for stress response and virulence (i.e., σ(B) and PrfA), we analyzed three L. monocytogenes parent strains and isogenic mutants (ΔsigB, ΔprfA, and ΔsigBΔprfA), representing different serotypes and lineages, for their ability to grow, at 25°C, in BHI with 1.9 M NaCl. With regard to growth rate, only the lineage IV strain presented a significant difference between the parent strain and both of its respective mutants lacking prfA (ΔprfA and ΔsigBΔprfA). Conversely, the lineage I and II parent strains showed significantly shorter lag phase in comparison to their respective ΔsigB mutant strains. Intestinal epithelial cell invasion assay and hemolytic activity assays showed a significant role for σ(B) in the former and for PrfA in the latter. To explore the mechanism that may contribute to the extended lag phase in the ΔsigB mutant strain and survival and growth of the parent strain upon salt shock, whole genome transcription profiling was performed to compare transcript levels between the lineage I, serotype 1/2b, parent strain and its isogenic ΔsigB mutant after 30 min of lag phase growth at 25°C in the presence of 1.9M NaCl (salt shock) without aeration. Microarray data showed significantly higher transcript levels for 173 genes in the parent strain as compared to the ΔsigB strain. Overall, 102 of the 173 σ(B) up-regulated genes had been identified in previous studies, indicating that 71 genes were newly identified as being up-regulated by σ(B) in this study. We hypothesize that, among these genes newly identified as σ(B) up-regulated, four genes (lmo2174, lmo0530, lmo0527 and lmo0529) may play a major role in response to salt stress. Lmo2174 contains domains that facilitate sensing and producing a transduction signal in the form of cyclic di-GMP, which may activate the enzymes Lmo0527, Lmo0529 and Lmo0530, which encode proteins similar to those responsible for synthesis of exopolysaccharides that may protect the cell by changing the cell wall structure during salt stress. Overall, our data showed that σ(B), but not PrfA, contributes to growth under salt stress. Moreover, we show that the σ(B) regulon of a L. monocytogenes lineage I strain challenged with salt shock include |
---|---|
ISSN: | 1879-3460 |
DOI: | 10.1016/j.ijfoodmicro.2014.02.018 |