Loading…

Structure and properties of bimetallic titanium and vanadium oxide clusters

By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: V n Ti n −4 O 10 − ( n = 1-4), (TiO 2...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2014-05, Vol.16 (18), p.8441-8447
Main Authors: Helmich, Benjamin, Sierka, Marek, Döbler, Jens, Sauer, Joachim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3
cites cdi_FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3
container_end_page 8447
container_issue 18
container_start_page 8441
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Helmich, Benjamin
Sierka, Marek
Döbler, Jens
Sauer, Joachim
description By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: V n Ti n −4 O 10 − ( n = 1-4), (TiO 2 )VO n − ( n = 1-4), and (TiO 2 )VO n + ( n = 1-3). Apart from (TiO 2 ) 3 VO − , vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti 4 O 10 − there are several non-symmetric and distorted cages that have an up to 68 kJ mol −1 lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO 2 ) 3 VO 3 − and (TiO 2 ) 3 VO 2 + clusters as measured by the energy of removing 1/2 O 2 (297 and 227 kJ mol −1 , respectively) is less than that of the pure vanadium oxide clusters (V 2 O 5 )VO 3 − and (V 2 O 5 )VO 2 + (283 and 165 kJ mol −1 , respectively). Mixed Ti-V oxide clusters retain the cage structures of their pure V analogues, but their oxidative power as measured by the energy of removing 1/2 O 2 is less than that of the pure V oxide clusters.
doi_str_mv 10.1039/c4cp00752b
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24668035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541427062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3</originalsourceid><addsrcrecordid>eNqN0EtLxDAUBeAgijOObtwrdSdCNWkeTZcy-MIBF-q6JOkNRPoySUX_vR1nnNmJq5tLPg6Xg9AxwZcE0-LKMNNjnPNM76ApYYKmBZZsd_POxQQdhPCGMSac0H00yZgQElM-RY_P0Q8mDh4S1VZJ77sefHQQks4m2jUQVV07k0QXVeuG5kd9qFZVy6X7dBUkph5CBB8O0Z5VdYCj9Zyh19ubl_l9uni6e5hfL1LDMI-pBS4UgJTW2CyTSmldKa6BcGBkPCvTGosqk5JW3GguLJWsoLywkFOiraYzdL7KHa99HyDEsnHBQF2rFrohlIQzwrIci-wflDBGKRF4pBcranwXggdb9t41yn-VBJfLnsttzyM-XecOuoFqQ3-LHcHZCvhgNr_bgLKv7GhO_jL0G495jqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1514433160</pqid></control><display><type>article</type><title>Structure and properties of bimetallic titanium and vanadium oxide clusters</title><source>Royal Society of Chemistry Journals</source><creator>Helmich, Benjamin ; Sierka, Marek ; Döbler, Jens ; Sauer, Joachim</creator><creatorcontrib>Helmich, Benjamin ; Sierka, Marek ; Döbler, Jens ; Sauer, Joachim</creatorcontrib><description>By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: V n Ti n −4 O 10 − ( n = 1-4), (TiO 2 )VO n − ( n = 1-4), and (TiO 2 )VO n + ( n = 1-3). Apart from (TiO 2 ) 3 VO − , vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti 4 O 10 − there are several non-symmetric and distorted cages that have an up to 68 kJ mol −1 lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO 2 ) 3 VO 3 − and (TiO 2 ) 3 VO 2 + clusters as measured by the energy of removing 1/2 O 2 (297 and 227 kJ mol −1 , respectively) is less than that of the pure vanadium oxide clusters (V 2 O 5 )VO 3 − and (V 2 O 5 )VO 2 + (283 and 165 kJ mol −1 , respectively). Mixed Ti-V oxide clusters retain the cage structures of their pure V analogues, but their oxidative power as measured by the energy of removing 1/2 O 2 is less than that of the pure V oxide clusters.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp00752b</identifier><identifier>PMID: 24668035</identifier><language>eng</language><publisher>England</publisher><subject>Bimetals ; Cage ; Clusters ; Genetic algorithms ; Titanium ; Titanium dioxide ; Vanadium ; Vanadium oxides</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-05, Vol.16 (18), p.8441-8447</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3</citedby><cites>FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24668035$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmich, Benjamin</creatorcontrib><creatorcontrib>Sierka, Marek</creatorcontrib><creatorcontrib>Döbler, Jens</creatorcontrib><creatorcontrib>Sauer, Joachim</creatorcontrib><title>Structure and properties of bimetallic titanium and vanadium oxide clusters</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: V n Ti n −4 O 10 − ( n = 1-4), (TiO 2 )VO n − ( n = 1-4), and (TiO 2 )VO n + ( n = 1-3). Apart from (TiO 2 ) 3 VO − , vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti 4 O 10 − there are several non-symmetric and distorted cages that have an up to 68 kJ mol −1 lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO 2 ) 3 VO 3 − and (TiO 2 ) 3 VO 2 + clusters as measured by the energy of removing 1/2 O 2 (297 and 227 kJ mol −1 , respectively) is less than that of the pure vanadium oxide clusters (V 2 O 5 )VO 3 − and (V 2 O 5 )VO 2 + (283 and 165 kJ mol −1 , respectively). Mixed Ti-V oxide clusters retain the cage structures of their pure V analogues, but their oxidative power as measured by the energy of removing 1/2 O 2 is less than that of the pure V oxide clusters.</description><subject>Bimetals</subject><subject>Cage</subject><subject>Clusters</subject><subject>Genetic algorithms</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Vanadium</subject><subject>Vanadium oxides</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLxDAUBeAgijOObtwrdSdCNWkeTZcy-MIBF-q6JOkNRPoySUX_vR1nnNmJq5tLPg6Xg9AxwZcE0-LKMNNjnPNM76ApYYKmBZZsd_POxQQdhPCGMSac0H00yZgQElM-RY_P0Q8mDh4S1VZJ77sefHQQks4m2jUQVV07k0QXVeuG5kd9qFZVy6X7dBUkph5CBB8O0Z5VdYCj9Zyh19ubl_l9uni6e5hfL1LDMI-pBS4UgJTW2CyTSmldKa6BcGBkPCvTGosqk5JW3GguLJWsoLywkFOiraYzdL7KHa99HyDEsnHBQF2rFrohlIQzwrIci-wflDBGKRF4pBcranwXggdb9t41yn-VBJfLnsttzyM-XecOuoFqQ3-LHcHZCvhgNr_bgLKv7GhO_jL0G495jqA</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Helmich, Benjamin</creator><creator>Sierka, Marek</creator><creator>Döbler, Jens</creator><creator>Sauer, Joachim</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140514</creationdate><title>Structure and properties of bimetallic titanium and vanadium oxide clusters</title><author>Helmich, Benjamin ; Sierka, Marek ; Döbler, Jens ; Sauer, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bimetals</topic><topic>Cage</topic><topic>Clusters</topic><topic>Genetic algorithms</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Vanadium</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmich, Benjamin</creatorcontrib><creatorcontrib>Sierka, Marek</creatorcontrib><creatorcontrib>Döbler, Jens</creatorcontrib><creatorcontrib>Sauer, Joachim</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmich, Benjamin</au><au>Sierka, Marek</au><au>Döbler, Jens</au><au>Sauer, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and properties of bimetallic titanium and vanadium oxide clusters</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>16</volume><issue>18</issue><spage>8441</spage><epage>8447</epage><pages>8441-8447</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>By employing a genetic algorithm together with density functional theory (B3LYP), we investigate the most stable minimum structures of several bimetallic titanium and vanadium oxide clusters that contain four metal atoms. The following compositions are studied: V n Ti n −4 O 10 − ( n = 1-4), (TiO 2 )VO n − ( n = 1-4), and (TiO 2 )VO n + ( n = 1-3). Apart from (TiO 2 ) 3 VO − , vanadium oxo groups are always part of the most stable minimum structures when vanadium is present. Anti-ferromagnetic coupling lowers the energy substantially if spin centers are located at neighbored metal atoms rather than at distant oxygen radical sites. Vanadium-rich or oxygen-poor compositions prefer symmetric adamantane-like cage structures, some of which have already been proposed in a previous study. In contrast, vanadium-poor and oxygen-rich compositions show versatile structural motifs that cannot be intuitively derived from the symmetric cage motif. Particularly, for Ti 4 O 10 − there are several non-symmetric and distorted cages that have an up to 68 kJ mol −1 lower energy than the symmetric adamantane-like cage structure. Nevertheless, for the adamantane-like cage the simulated infra-red spectrum (within the harmonic approximation) agrees best with the experimental vibrational spectrum. The oxidative power of the (TiO 2 ) 3 VO 3 − and (TiO 2 ) 3 VO 2 + clusters as measured by the energy of removing 1/2 O 2 (297 and 227 kJ mol −1 , respectively) is less than that of the pure vanadium oxide clusters (V 2 O 5 )VO 3 − and (V 2 O 5 )VO 2 + (283 and 165 kJ mol −1 , respectively). Mixed Ti-V oxide clusters retain the cage structures of their pure V analogues, but their oxidative power as measured by the energy of removing 1/2 O 2 is less than that of the pure V oxide clusters.</abstract><cop>England</cop><pmid>24668035</pmid><doi>10.1039/c4cp00752b</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-05, Vol.16 (18), p.8441-8447
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_24668035
source Royal Society of Chemistry Journals
subjects Bimetals
Cage
Clusters
Genetic algorithms
Titanium
Titanium dioxide
Vanadium
Vanadium oxides
title Structure and properties of bimetallic titanium and vanadium oxide clusters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20properties%20of%20bimetallic%20titanium%20and%20vanadium%20oxide%20clusters&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Helmich,%20Benjamin&rft.date=2014-05-14&rft.volume=16&rft.issue=18&rft.spage=8441&rft.epage=8447&rft.pages=8441-8447&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp00752b&rft_dat=%3Cproquest_pubme%3E1541427062%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-fe56aee88fcf228aabbda5be15e416802bb06d2883d5cb56f3849359fe731bfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1514433160&rft_id=info:pmid/24668035&rfr_iscdi=true