Loading…
Ab initio study of gallium stabilized δ-plutonium alloys and hydrogen-vacancy complexes
All-electron density functional theory was used to investigate δ-plutonium (δ-Pu) alloyed with gallium (Ga) impurities at 3.125, 6.25, 9.375 atomic (at)% Ga concentrations. The results indicated that the lowest energy structure is anti-ferromagnetic, independent of the Ga concentration. At higher Ga...
Saved in:
Published in: | Journal of physics. Condensed matter 2014-06, Vol.26 (23), p.235502-235502 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All-electron density functional theory was used to investigate δ-plutonium (δ-Pu) alloyed with gallium (Ga) impurities at 3.125, 6.25, 9.375 atomic (at)% Ga concentrations. The results indicated that the lowest energy structure is anti-ferromagnetic, independent of the Ga concentration. At higher Ga concentrations (>3.125 at%), the position of the Ga atoms are separated by four nearest neighbor Pu-Pu shells. The results also showed that the lattice constant contracts with increasing Ga concentration, which is in agreement with experimental data. Furthermore with increasing Ga concentration, the face-centered-cubic structure becomes more stably coupled with increasing short-range disorder. The formation energies show that the alloying process is exothermic, with an energy range of −0.028 to −0.099 eV/atom. The analyses of the partial density of states indicated that the Pu-Ga interactions are dominated by Pu 6d and Ga 4p hybridizations, as well as Ga 4s-4p hybridizations. Finally, the computed formation energies for vacancy and hydrogen-vacancy complexes within the 3.125 at% Ga cell were 1.12 eV (endothermic) and −3.88 eV (exothermic), respectively. In addition, the hydrogen atom prefers to interact much more strongly to the Pu atom than the Ga atom in the hydrogen-vacancy complex. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/26/23/235502 |