Loading…
Electrocardiogram Classification Using Reservoir Computing With Logistic Regression
An adapted state-of-the-art method of processing information known as Reservoir Computing is used to show its utility on the open and time-consuming problem of heartbeat classification. The MIT-BIH arrhythmia database is used following the guidelines of the Association for the Advancement of Medical...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2015-05, Vol.19 (3), p.892-898 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An adapted state-of-the-art method of processing information known as Reservoir Computing is used to show its utility on the open and time-consuming problem of heartbeat classification. The MIT-BIH arrhythmia database is used following the guidelines of the Association for the Advancement of Medical Instrumentation. Our approach requires a computationally inexpensive preprocessing of the electrocardiographic signal leading to a fast algorithm and approaching a real-time classification solution. Our multiclass classification results indicate an average specificity of 97.75% with an average accuracy of 98.43%. Sensitivity and positive predicted value show an average of 84.83% and 88.75%, respectively, what makes our approach significant for its use in a clinical context. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2014.2332001 |