Loading…

Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)

We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2−xFe4Si16−y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2014-09, Vol.26 (37), p.376002-376002
Main Authors: Smith, G J, Simonson, J W, Orvis, T, Marques, C, Grose, J E, Kistner-Morris, J J, Wu, L, Cho, K, Kim, H, Tanatar, M A, Garlea, V O, Prozorov, R, Zhu, Y, Aronson, M C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 376002
container_issue 37
container_start_page 376002
container_title Journal of physics. Condensed matter
container_volume 26
creator Smith, G J
Simonson, J W
Orvis, T
Marques, C
Grose, J E
Kistner-Morris, J J
Wu, L
Cho, K
Kim, H
Tanatar, M A
Garlea, V O
Prozorov, R
Zhu, Y
Aronson, M C
description We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2−xFe4Si16−y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.
doi_str_mv 10.1088/0953-8984/26/37/376002
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25164321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561973557</sourcerecordid><originalsourceid>FETCH-LOGICAL-i243t-c5115c5f95c258f57d30c27d11679322635d4e059bbcc6f3602b8345cbc43b723</originalsourceid><addsrcrecordid>eNptkc1KAzEUhYMotlZfoczOCk6b_2QWLkqxWii4UEHchJlMBlI6PyYz0L5B1z6iT2JKqyAIF-5ZfPdy7rkADBEcIyjlBCaMxDKRdIL5hIhQHEJ8AvqIcBRzKt9OQf8X6oEL71cQQioJPQc9zBCnBKM-mC6q1tnKWx1VaVX71nW67ZyJbBW9O_y1-9zMDX22iAe5HW2iuwiOJbqNtkHxMeQ3l-CsSNfeXB37ALzO719mj_Hy6WExmy5jiylpY80QYpoVCdOYyYKJnECNRY4QFwnBmBOWUwNZkmVa84JwiLNglulMU5IJTAZgdNjbuPqjM75VpfXarNdpZerOK8Q4SgRhTAR0eES7rDS5apwtU7dVP2cH4PoA2LpRq7pzVXCudKkwV0SoQ5iqyYtA4n9IBNX-C2ofsNoH_GeQfAOa9HNL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561973557</pqid></control><display><type>article</type><title>Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Smith, G J ; Simonson, J W ; Orvis, T ; Marques, C ; Grose, J E ; Kistner-Morris, J J ; Wu, L ; Cho, K ; Kim, H ; Tanatar, M A ; Garlea, V O ; Prozorov, R ; Zhu, Y ; Aronson, M C</creator><creatorcontrib>Smith, G J ; Simonson, J W ; Orvis, T ; Marques, C ; Grose, J E ; Kistner-Morris, J J ; Wu, L ; Cho, K ; Kim, H ; Tanatar, M A ; Garlea, V O ; Prozorov, R ; Zhu, Y ; Aronson, M C</creatorcontrib><description>We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2−xFe4Si16−y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/26/37/376002</identifier><identifier>PMID: 25164321</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>heterogeneity ; magnetism ; nano-grains</subject><ispartof>Journal of physics. Condensed matter, 2014-09, Vol.26 (37), p.376002-376002</ispartof><rights>2014 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25164321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, G J</creatorcontrib><creatorcontrib>Simonson, J W</creatorcontrib><creatorcontrib>Orvis, T</creatorcontrib><creatorcontrib>Marques, C</creatorcontrib><creatorcontrib>Grose, J E</creatorcontrib><creatorcontrib>Kistner-Morris, J J</creatorcontrib><creatorcontrib>Wu, L</creatorcontrib><creatorcontrib>Cho, K</creatorcontrib><creatorcontrib>Kim, H</creatorcontrib><creatorcontrib>Tanatar, M A</creatorcontrib><creatorcontrib>Garlea, V O</creatorcontrib><creatorcontrib>Prozorov, R</creatorcontrib><creatorcontrib>Zhu, Y</creatorcontrib><creatorcontrib>Aronson, M C</creatorcontrib><title>Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2−xFe4Si16−y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.</description><subject>heterogeneity</subject><subject>magnetism</subject><subject>nano-grains</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkc1KAzEUhYMotlZfoczOCk6b_2QWLkqxWii4UEHchJlMBlI6PyYz0L5B1z6iT2JKqyAIF-5ZfPdy7rkADBEcIyjlBCaMxDKRdIL5hIhQHEJ8AvqIcBRzKt9OQf8X6oEL71cQQioJPQc9zBCnBKM-mC6q1tnKWx1VaVX71nW67ZyJbBW9O_y1-9zMDX22iAe5HW2iuwiOJbqNtkHxMeQ3l-CsSNfeXB37ALzO719mj_Hy6WExmy5jiylpY80QYpoVCdOYyYKJnECNRY4QFwnBmBOWUwNZkmVa84JwiLNglulMU5IJTAZgdNjbuPqjM75VpfXarNdpZerOK8Q4SgRhTAR0eES7rDS5apwtU7dVP2cH4PoA2LpRq7pzVXCudKkwV0SoQ5iqyYtA4n9IBNX-C2ofsNoH_GeQfAOa9HNL</recordid><startdate>20140917</startdate><enddate>20140917</enddate><creator>Smith, G J</creator><creator>Simonson, J W</creator><creator>Orvis, T</creator><creator>Marques, C</creator><creator>Grose, J E</creator><creator>Kistner-Morris, J J</creator><creator>Wu, L</creator><creator>Cho, K</creator><creator>Kim, H</creator><creator>Tanatar, M A</creator><creator>Garlea, V O</creator><creator>Prozorov, R</creator><creator>Zhu, Y</creator><creator>Aronson, M C</creator><general>IOP Publishing</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20140917</creationdate><title>Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)</title><author>Smith, G J ; Simonson, J W ; Orvis, T ; Marques, C ; Grose, J E ; Kistner-Morris, J J ; Wu, L ; Cho, K ; Kim, H ; Tanatar, M A ; Garlea, V O ; Prozorov, R ; Zhu, Y ; Aronson, M C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i243t-c5115c5f95c258f57d30c27d11679322635d4e059bbcc6f3602b8345cbc43b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>heterogeneity</topic><topic>magnetism</topic><topic>nano-grains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, G J</creatorcontrib><creatorcontrib>Simonson, J W</creatorcontrib><creatorcontrib>Orvis, T</creatorcontrib><creatorcontrib>Marques, C</creatorcontrib><creatorcontrib>Grose, J E</creatorcontrib><creatorcontrib>Kistner-Morris, J J</creatorcontrib><creatorcontrib>Wu, L</creatorcontrib><creatorcontrib>Cho, K</creatorcontrib><creatorcontrib>Kim, H</creatorcontrib><creatorcontrib>Tanatar, M A</creatorcontrib><creatorcontrib>Garlea, V O</creatorcontrib><creatorcontrib>Prozorov, R</creatorcontrib><creatorcontrib>Zhu, Y</creatorcontrib><creatorcontrib>Aronson, M C</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, G J</au><au>Simonson, J W</au><au>Orvis, T</au><au>Marques, C</au><au>Grose, J E</au><au>Kistner-Morris, J J</au><au>Wu, L</au><au>Cho, K</au><au>Kim, H</au><au>Tanatar, M A</au><au>Garlea, V O</au><au>Prozorov, R</au><au>Zhu, Y</au><au>Aronson, M C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2014-09-17</date><risdate>2014</risdate><volume>26</volume><issue>37</issue><spage>376002</spage><epage>376002</epage><pages>376002-376002</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>We present a study of the crystal structure and physical properties of single crystals of a new Fe-based ternary compound, Zr2−xFe4Si16−y(x = 0.81, y = 6.06). Zr1.19Fe4Si9.94 is a layered compound, where stoichiometric β-FeSi2-derived slabs are separated by Zr-Si planes with substantial numbers of vacancies. High resolution transmission electron microscopy (HRTEM) experiments show that these Zr-Si layers consist of 3.5 nm domains where the Zr and Si vacancies are ordered within a supercell sixteen times the volume of the stoichiometric cell. Within these domains, the occupancies of the Zr and Si sites obey symmetry rules that permit only certain compositions, none of which by themselves reproduce the average composition found in x-ray diffraction experiments. Magnetic susceptibility and magnetization measurements reveal a small but appreciable number of magnetic moments that remain freely fluctuating to 1.8 K, while neutron diffraction confirms the absence of bulk magnetic order with a moment of 0.2μB or larger down to 1.5 K. Electrical resistivity measurements find that Zr1.19Fe4Si9.94 is metallic, and the modest value of the Sommerfeld coefficient of the specific heat γ = C/T suggests that quasi-particle masses are not particularly strongly enhanced. The onset of superconductivity at Tc 6 K results in a partial resistive transition and a small Meissner signal, although a bulk-like transition is found in the specific heat. Sharp peaks in the ac susceptibility signal the interplay of the normal skin depth and the London penetration depth, typical of a system in which nano-sized superconducting grains are separated by a non-superconducting host. Ultra low field differential magnetic susceptibility measurements reveal the presence of a surprisingly large number of trace magnetic and superconducting phases, suggesting that the Zr-Fe-Si ternary system could be a potentially rich source of new bulk superconductors.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>25164321</pmid><doi>10.1088/0953-8984/26/37/376002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2014-09, Vol.26 (37), p.376002-376002
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmed_primary_25164321
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects heterogeneity
magnetism
nano-grains
title Intrinsic nanostructure in Zr2−xFe4Si16−y(x = 0.81, y = 6.06)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20nanostructure%20in%20Zr2%E2%88%92xFe4Si16%E2%88%92y(x%20=%200.81,%20y%20=%206.06)&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Smith,%20G%20J&rft.date=2014-09-17&rft.volume=26&rft.issue=37&rft.spage=376002&rft.epage=376002&rft.pages=376002-376002&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/26/37/376002&rft_dat=%3Cproquest_pubme%3E1561973557%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i243t-c5115c5f95c258f57d30c27d11679322635d4e059bbcc6f3602b8345cbc43b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561973557&rft_id=info:pmid/25164321&rfr_iscdi=true