Loading…

Long-term microfouling on commercial biocidal fouling control coatings

The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after...

Full description

Saved in:
Bibliographic Details
Published in:Biofouling (Chur, Switzerland) Switzerland), 2014-01, Vol.30 (10), p.1155-1164
Main Authors: Muthukrishnan, Thirumahal, Abed, Raeid M. M., Dobretsov, Sergey, Kidd, Barry, Finnie, Alistair A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3
cites cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3
container_end_page 1164
container_issue 10
container_start_page 1155
container_title Biofouling (Chur, Switzerland)
container_volume 30
creator Muthukrishnan, Thirumahal
Abed, Raeid M. M.
Dobretsov, Sergey
Kidd, Barry
Finnie, Alistair A.
description The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.
doi_str_mv 10.1080/08927014.2014.972951
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25390938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625346637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</originalsourceid><addsrcrecordid>eNqNkc9LwzAUgIMobk7_A5EevXTmd9KTyHAqDLzoOaRpOiJtM5MW2X9vSjePsst7L-R778H7ALhFcImghA9QFlhARJd4DIXABUNnYI4gLnJMGT0H8xHJR2YGrmL8ghAKjtklmGFGClgQOQfrje-2eW9Dm7XOBF_7oXHdNvNdZnzb2mCcbrLSeeOqVBy_je_64JuUdZ_e8Rpc1LqJ9uaQF-Bz_fyxes037y9vq6dNbhjCfV7aEgkhOSk1JdbWJaFIIK0lE0awAhIOLZSWUC2wwUXFdVWiEhMsa0yRrsgC3E9zd8F_Dzb2qnXR2KbRnfVDVIgzRAnhXJ6AEgaxFBKegKaDUc6JSCid0HSrGIOt1S64Voe9QlCNXtTRixq9qMlLars7bBjK1lZ_TUcRCXicANfVPrT6x4emUr3eNz7UQXfGRUX-XfEL_0ibCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625346637</pqid></control><display><type>article</type><title>Long-term microfouling on commercial biocidal fouling control coatings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</creator><creatorcontrib>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</creatorcontrib><description>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</description><identifier>ISSN: 0892-7014</identifier><identifier>EISSN: 1029-2454</identifier><identifier>DOI: 10.1080/08927014.2014.972951</identifier><identifier>PMID: 25390938</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Bacteria ; Bacteria - classification ; Bacteria - drug effects ; biocidal coatings ; Biocides ; Biofilms ; Biofilms - drug effects ; Biofouling - prevention &amp; control ; Coatings ; Communities ; Copolymers ; Copper - pharmacology ; Density ; diatoms ; Diatoms - classification ; Diatoms - drug effects ; Disinfectants - pharmacology ; diversity ; Flavobacteria ; Fouling ; High-Throughput Nucleotide Sequencing ; microfouling ; pyrosequencing ; RNA, Ribosomal, 16S - genetics ; Seawater ; Ships</subject><ispartof>Biofouling (Chur, Switzerland), 2014-01, Vol.30 (10), p.1155-1164</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</citedby><cites>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25390938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthukrishnan, Thirumahal</creatorcontrib><creatorcontrib>Abed, Raeid M. M.</creatorcontrib><creatorcontrib>Dobretsov, Sergey</creatorcontrib><creatorcontrib>Kidd, Barry</creatorcontrib><creatorcontrib>Finnie, Alistair A.</creatorcontrib><title>Long-term microfouling on commercial biocidal fouling control coatings</title><title>Biofouling (Chur, Switzerland)</title><addtitle>Biofouling</addtitle><description>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</description><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>biocidal coatings</subject><subject>Biocides</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofouling - prevention &amp; control</subject><subject>Coatings</subject><subject>Communities</subject><subject>Copolymers</subject><subject>Copper - pharmacology</subject><subject>Density</subject><subject>diatoms</subject><subject>Diatoms - classification</subject><subject>Diatoms - drug effects</subject><subject>Disinfectants - pharmacology</subject><subject>diversity</subject><subject>Flavobacteria</subject><subject>Fouling</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>microfouling</subject><subject>pyrosequencing</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Seawater</subject><subject>Ships</subject><issn>0892-7014</issn><issn>1029-2454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9LwzAUgIMobk7_A5EevXTmd9KTyHAqDLzoOaRpOiJtM5MW2X9vSjePsst7L-R778H7ALhFcImghA9QFlhARJd4DIXABUNnYI4gLnJMGT0H8xHJR2YGrmL8ghAKjtklmGFGClgQOQfrje-2eW9Dm7XOBF_7oXHdNvNdZnzb2mCcbrLSeeOqVBy_je_64JuUdZ_e8Rpc1LqJ9uaQF-Bz_fyxes037y9vq6dNbhjCfV7aEgkhOSk1JdbWJaFIIK0lE0awAhIOLZSWUC2wwUXFdVWiEhMsa0yRrsgC3E9zd8F_Dzb2qnXR2KbRnfVDVIgzRAnhXJ6AEgaxFBKegKaDUc6JSCid0HSrGIOt1S64Voe9QlCNXtTRixq9qMlLars7bBjK1lZ_TUcRCXicANfVPrT6x4emUr3eNz7UQXfGRUX-XfEL_0ibCg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Muthukrishnan, Thirumahal</creator><creator>Abed, Raeid M. M.</creator><creator>Dobretsov, Sergey</creator><creator>Kidd, Barry</creator><creator>Finnie, Alistair A.</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SE</scope><scope>8BQ</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>Long-term microfouling on commercial biocidal fouling control coatings</title><author>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>biocidal coatings</topic><topic>Biocides</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofouling - prevention &amp; control</topic><topic>Coatings</topic><topic>Communities</topic><topic>Copolymers</topic><topic>Copper - pharmacology</topic><topic>Density</topic><topic>diatoms</topic><topic>Diatoms - classification</topic><topic>Diatoms - drug effects</topic><topic>Disinfectants - pharmacology</topic><topic>diversity</topic><topic>Flavobacteria</topic><topic>Fouling</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>microfouling</topic><topic>pyrosequencing</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Seawater</topic><topic>Ships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthukrishnan, Thirumahal</creatorcontrib><creatorcontrib>Abed, Raeid M. M.</creatorcontrib><creatorcontrib>Dobretsov, Sergey</creatorcontrib><creatorcontrib>Kidd, Barry</creatorcontrib><creatorcontrib>Finnie, Alistair A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biofouling (Chur, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthukrishnan, Thirumahal</au><au>Abed, Raeid M. M.</au><au>Dobretsov, Sergey</au><au>Kidd, Barry</au><au>Finnie, Alistair A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term microfouling on commercial biocidal fouling control coatings</atitle><jtitle>Biofouling (Chur, Switzerland)</jtitle><addtitle>Biofouling</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>30</volume><issue>10</issue><spage>1155</spage><epage>1164</epage><pages>1155-1164</pages><issn>0892-7014</issn><eissn>1029-2454</eissn><abstract>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>25390938</pmid><doi>10.1080/08927014.2014.972951</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-7014
ispartof Biofouling (Chur, Switzerland), 2014-01, Vol.30 (10), p.1155-1164
issn 0892-7014
1029-2454
language eng
recordid cdi_pubmed_primary_25390938
source Taylor and Francis Science and Technology Collection
subjects Bacteria
Bacteria - classification
Bacteria - drug effects
biocidal coatings
Biocides
Biofilms
Biofilms - drug effects
Biofouling - prevention & control
Coatings
Communities
Copolymers
Copper - pharmacology
Density
diatoms
Diatoms - classification
Diatoms - drug effects
Disinfectants - pharmacology
diversity
Flavobacteria
Fouling
High-Throughput Nucleotide Sequencing
microfouling
pyrosequencing
RNA, Ribosomal, 16S - genetics
Seawater
Ships
title Long-term microfouling on commercial biocidal fouling control coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20microfouling%20on%20commercial%20biocidal%20fouling%20control%20coatings&rft.jtitle=Biofouling%20(Chur,%20Switzerland)&rft.au=Muthukrishnan,%20Thirumahal&rft.date=2014-01-01&rft.volume=30&rft.issue=10&rft.spage=1155&rft.epage=1164&rft.pages=1155-1164&rft.issn=0892-7014&rft.eissn=1029-2454&rft_id=info:doi/10.1080/08927014.2014.972951&rft_dat=%3Cproquest_pubme%3E1625346637%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1625346637&rft_id=info:pmid/25390938&rfr_iscdi=true