Loading…
Long-term microfouling on commercial biocidal fouling control coatings
The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after...
Saved in:
Published in: | Biofouling (Chur, Switzerland) Switzerland), 2014-01, Vol.30 (10), p.1155-1164 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3 |
container_end_page | 1164 |
container_issue | 10 |
container_start_page | 1155 |
container_title | Biofouling (Chur, Switzerland) |
container_volume | 30 |
creator | Muthukrishnan, Thirumahal Abed, Raeid M. M. Dobretsov, Sergey Kidd, Barry Finnie, Alistair A. |
description | The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings. |
doi_str_mv | 10.1080/08927014.2014.972951 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25390938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1625346637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</originalsourceid><addsrcrecordid>eNqNkc9LwzAUgIMobk7_A5EevXTmd9KTyHAqDLzoOaRpOiJtM5MW2X9vSjePsst7L-R778H7ALhFcImghA9QFlhARJd4DIXABUNnYI4gLnJMGT0H8xHJR2YGrmL8ghAKjtklmGFGClgQOQfrje-2eW9Dm7XOBF_7oXHdNvNdZnzb2mCcbrLSeeOqVBy_je_64JuUdZ_e8Rpc1LqJ9uaQF-Bz_fyxes037y9vq6dNbhjCfV7aEgkhOSk1JdbWJaFIIK0lE0awAhIOLZSWUC2wwUXFdVWiEhMsa0yRrsgC3E9zd8F_Dzb2qnXR2KbRnfVDVIgzRAnhXJ6AEgaxFBKegKaDUc6JSCid0HSrGIOt1S64Voe9QlCNXtTRixq9qMlLars7bBjK1lZ_TUcRCXicANfVPrT6x4emUr3eNz7UQXfGRUX-XfEL_0ibCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625346637</pqid></control><display><type>article</type><title>Long-term microfouling on commercial biocidal fouling control coatings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</creator><creatorcontrib>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</creatorcontrib><description>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</description><identifier>ISSN: 0892-7014</identifier><identifier>EISSN: 1029-2454</identifier><identifier>DOI: 10.1080/08927014.2014.972951</identifier><identifier>PMID: 25390938</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Bacteria ; Bacteria - classification ; Bacteria - drug effects ; biocidal coatings ; Biocides ; Biofilms ; Biofilms - drug effects ; Biofouling - prevention & control ; Coatings ; Communities ; Copolymers ; Copper - pharmacology ; Density ; diatoms ; Diatoms - classification ; Diatoms - drug effects ; Disinfectants - pharmacology ; diversity ; Flavobacteria ; Fouling ; High-Throughput Nucleotide Sequencing ; microfouling ; pyrosequencing ; RNA, Ribosomal, 16S - genetics ; Seawater ; Ships</subject><ispartof>Biofouling (Chur, Switzerland), 2014-01, Vol.30 (10), p.1155-1164</ispartof><rights>2014 Taylor & Francis 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</citedby><cites>FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25390938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthukrishnan, Thirumahal</creatorcontrib><creatorcontrib>Abed, Raeid M. M.</creatorcontrib><creatorcontrib>Dobretsov, Sergey</creatorcontrib><creatorcontrib>Kidd, Barry</creatorcontrib><creatorcontrib>Finnie, Alistair A.</creatorcontrib><title>Long-term microfouling on commercial biocidal fouling control coatings</title><title>Biofouling (Chur, Switzerland)</title><addtitle>Biofouling</addtitle><description>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</description><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - drug effects</subject><subject>biocidal coatings</subject><subject>Biocides</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofouling - prevention & control</subject><subject>Coatings</subject><subject>Communities</subject><subject>Copolymers</subject><subject>Copper - pharmacology</subject><subject>Density</subject><subject>diatoms</subject><subject>Diatoms - classification</subject><subject>Diatoms - drug effects</subject><subject>Disinfectants - pharmacology</subject><subject>diversity</subject><subject>Flavobacteria</subject><subject>Fouling</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>microfouling</subject><subject>pyrosequencing</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Seawater</subject><subject>Ships</subject><issn>0892-7014</issn><issn>1029-2454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc9LwzAUgIMobk7_A5EevXTmd9KTyHAqDLzoOaRpOiJtM5MW2X9vSjePsst7L-R778H7ALhFcImghA9QFlhARJd4DIXABUNnYI4gLnJMGT0H8xHJR2YGrmL8ghAKjtklmGFGClgQOQfrje-2eW9Dm7XOBF_7oXHdNvNdZnzb2mCcbrLSeeOqVBy_je_64JuUdZ_e8Rpc1LqJ9uaQF-Bz_fyxes037y9vq6dNbhjCfV7aEgkhOSk1JdbWJaFIIK0lE0awAhIOLZSWUC2wwUXFdVWiEhMsa0yRrsgC3E9zd8F_Dzb2qnXR2KbRnfVDVIgzRAnhXJ6AEgaxFBKegKaDUc6JSCid0HSrGIOt1S64Voe9QlCNXtTRixq9qMlLars7bBjK1lZ_TUcRCXicANfVPrT6x4emUr3eNz7UQXfGRUX-XfEL_0ibCg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Muthukrishnan, Thirumahal</creator><creator>Abed, Raeid M. M.</creator><creator>Dobretsov, Sergey</creator><creator>Kidd, Barry</creator><creator>Finnie, Alistair A.</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SE</scope><scope>8BQ</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>Long-term microfouling on commercial biocidal fouling control coatings</title><author>Muthukrishnan, Thirumahal ; Abed, Raeid M. M. ; Dobretsov, Sergey ; Kidd, Barry ; Finnie, Alistair A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - drug effects</topic><topic>biocidal coatings</topic><topic>Biocides</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofouling - prevention & control</topic><topic>Coatings</topic><topic>Communities</topic><topic>Copolymers</topic><topic>Copper - pharmacology</topic><topic>Density</topic><topic>diatoms</topic><topic>Diatoms - classification</topic><topic>Diatoms - drug effects</topic><topic>Disinfectants - pharmacology</topic><topic>diversity</topic><topic>Flavobacteria</topic><topic>Fouling</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>microfouling</topic><topic>pyrosequencing</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Seawater</topic><topic>Ships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthukrishnan, Thirumahal</creatorcontrib><creatorcontrib>Abed, Raeid M. M.</creatorcontrib><creatorcontrib>Dobretsov, Sergey</creatorcontrib><creatorcontrib>Kidd, Barry</creatorcontrib><creatorcontrib>Finnie, Alistair A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biofouling (Chur, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthukrishnan, Thirumahal</au><au>Abed, Raeid M. M.</au><au>Dobretsov, Sergey</au><au>Kidd, Barry</au><au>Finnie, Alistair A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-term microfouling on commercial biocidal fouling control coatings</atitle><jtitle>Biofouling (Chur, Switzerland)</jtitle><addtitle>Biofouling</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>30</volume><issue>10</issue><spage>1155</spage><epage>1164</epage><pages>1155-1164</pages><issn>0892-7014</issn><eissn>1029-2454</eissn><abstract>The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>25390938</pmid><doi>10.1080/08927014.2014.972951</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7014 |
ispartof | Biofouling (Chur, Switzerland), 2014-01, Vol.30 (10), p.1155-1164 |
issn | 0892-7014 1029-2454 |
language | eng |
recordid | cdi_pubmed_primary_25390938 |
source | Taylor and Francis Science and Technology Collection |
subjects | Bacteria Bacteria - classification Bacteria - drug effects biocidal coatings Biocides Biofilms Biofilms - drug effects Biofouling - prevention & control Coatings Communities Copolymers Copper - pharmacology Density diatoms Diatoms - classification Diatoms - drug effects Disinfectants - pharmacology diversity Flavobacteria Fouling High-Throughput Nucleotide Sequencing microfouling pyrosequencing RNA, Ribosomal, 16S - genetics Seawater Ships |
title | Long-term microfouling on commercial biocidal fouling control coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-term%20microfouling%20on%20commercial%20biocidal%20fouling%20control%20coatings&rft.jtitle=Biofouling%20(Chur,%20Switzerland)&rft.au=Muthukrishnan,%20Thirumahal&rft.date=2014-01-01&rft.volume=30&rft.issue=10&rft.spage=1155&rft.epage=1164&rft.pages=1155-1164&rft.issn=0892-7014&rft.eissn=1029-2454&rft_id=info:doi/10.1080/08927014.2014.972951&rft_dat=%3Cproquest_pubme%3E1625346637%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-beb177863ba43eefb34171aa857c7590360e08e34a72c29d6adb1b2328f241ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1625346637&rft_id=info:pmid/25390938&rfr_iscdi=true |