Loading…

Theory of point contact spectroscopy in correlated materials

Significance Point-contact spectroscopy is a bulk spectroscopic probe that has been reliably used to map out bosonic and superconducting order parameter spectra via quasiparticle classical and Andreev scattering, respectively. We previously showed this technique to be exquisitely sensitive to an eff...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-01, Vol.112 (3), p.651-656
Main Authors: Lee, Wei-Cheng, Park, Wan Kyu, Arham, Hamood Z., Greene, Laura H., Phillips, Philip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83
cites cdi_FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83
container_end_page 656
container_issue 3
container_start_page 651
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Lee, Wei-Cheng
Park, Wan Kyu
Arham, Hamood Z.
Greene, Laura H.
Phillips, Philip
description Significance Point-contact spectroscopy is a bulk spectroscopic probe that has been reliably used to map out bosonic and superconducting order parameter spectra via quasiparticle classical and Andreev scattering, respectively. We previously showed this technique to be exquisitely sensitive to an effective density of states specifically arising from non-Fermi liquid behavior, and in the case of the iron pnictides and chalcogenides, electronic nematicity manifesting as a zero bias conductance peak corresponds to an increased effective density of states at the Fermi level arising from orbital fluctuations. We developed a quantum mechanical theory to show how this technique reveals such effective density of states while being insensitive to gapless Fermi surface reconstructions and is therefore a valuable filter for detecting non-Fermi liquid behavior. We developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI / dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A ( ω = eV ) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions under which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. This finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.
doi_str_mv 10.1073/pnas.1422509112
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25561532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26459372</jstor_id><sourcerecordid>26459372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83</originalsourceid><addsrcrecordid>eNpdUU1vEzEQtRCIhsCZE7Aql162nfHXeqUKqaqgIFXiQHu2HMfbONqsF9tByr_Hq4QE8MFj-b03H28IeYtwidCwq3Ew6RI5pQJaRPqMzLA8aslbeE5mALSpFaf8jLxKaQ0ArVDwkpxRISQKRmfk-mHlQtxVoavG4Idc2TBkY3OVRmdzDMmGcVf5ofzH6HqT3bLalDt606fX5EVXgntziHPy-OXzw-3X-v773bfbm_vaCkVzLVQjYNGhpBIbtoDOOMNFS21T8K50ooziEpoWLC4BJePCduUsltQ4YRWbk0_7vON2sXFL64YcTa_H6Dcm7nQwXv-LDH6ln8IvzRmiKj7Nyfk-QUjZ62R9dnZVJh3KjBopEwi0kC4OVWL4uXUp641P1vW9GVzYJo1SUA4tk7JQP_5HXYdtHIoHhcUVa9pGTFWv9ixbfEzRdceOEfS0Pj2tT5_WVxTv_x70yP-zr0J4dyBMymM6pJppKfCEr1MO8aSXxW_WTPoPe7wzQZun6JN-_EGL5wDIlZLIfgPsULIN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648379757</pqid></control><display><type>article</type><title>Theory of point contact spectroscopy in correlated materials</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Lee, Wei-Cheng ; Park, Wan Kyu ; Arham, Hamood Z. ; Greene, Laura H. ; Phillips, Philip</creator><creatorcontrib>Lee, Wei-Cheng ; Park, Wan Kyu ; Arham, Hamood Z. ; Greene, Laura H. ; Phillips, Philip ; Energy Frontier Research Centers (EFRC). Center for Emergent Superconductivity (CES)</creatorcontrib><description>Significance Point-contact spectroscopy is a bulk spectroscopic probe that has been reliably used to map out bosonic and superconducting order parameter spectra via quasiparticle classical and Andreev scattering, respectively. We previously showed this technique to be exquisitely sensitive to an effective density of states specifically arising from non-Fermi liquid behavior, and in the case of the iron pnictides and chalcogenides, electronic nematicity manifesting as a zero bias conductance peak corresponds to an increased effective density of states at the Fermi level arising from orbital fluctuations. We developed a quantum mechanical theory to show how this technique reveals such effective density of states while being insensitive to gapless Fermi surface reconstructions and is therefore a valuable filter for detecting non-Fermi liquid behavior. We developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI / dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A ( ω = eV ) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions under which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. This finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1422509112</identifier><identifier>PMID: 25561532</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Correlation analysis ; defects ; Electrodes ; electronic nematicity ; energy storage (including batteries and capacitors) ; INAUGURAL ARTICLE ; iron-based superconductors ; MATERIALS SCIENCE ; Metals ; Microscopy ; non-Fermi liquid ; phonons ; Physical Sciences ; Scattering ; Spectrum analysis ; spin dynamics ; superconductivity ; thermal conductivity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (3), p.651-656</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 20, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83</citedby><cites>FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26459372$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26459372$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25561532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235102$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Wei-Cheng</creatorcontrib><creatorcontrib>Park, Wan Kyu</creatorcontrib><creatorcontrib>Arham, Hamood Z.</creatorcontrib><creatorcontrib>Greene, Laura H.</creatorcontrib><creatorcontrib>Phillips, Philip</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC). Center for Emergent Superconductivity (CES)</creatorcontrib><title>Theory of point contact spectroscopy in correlated materials</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Point-contact spectroscopy is a bulk spectroscopic probe that has been reliably used to map out bosonic and superconducting order parameter spectra via quasiparticle classical and Andreev scattering, respectively. We previously showed this technique to be exquisitely sensitive to an effective density of states specifically arising from non-Fermi liquid behavior, and in the case of the iron pnictides and chalcogenides, electronic nematicity manifesting as a zero bias conductance peak corresponds to an increased effective density of states at the Fermi level arising from orbital fluctuations. We developed a quantum mechanical theory to show how this technique reveals such effective density of states while being insensitive to gapless Fermi surface reconstructions and is therefore a valuable filter for detecting non-Fermi liquid behavior. We developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI / dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A ( ω = eV ) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions under which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. This finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.</description><subject>Correlation analysis</subject><subject>defects</subject><subject>Electrodes</subject><subject>electronic nematicity</subject><subject>energy storage (including batteries and capacitors)</subject><subject>INAUGURAL ARTICLE</subject><subject>iron-based superconductors</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Microscopy</subject><subject>non-Fermi liquid</subject><subject>phonons</subject><subject>Physical Sciences</subject><subject>Scattering</subject><subject>Spectrum analysis</subject><subject>spin dynamics</subject><subject>superconductivity</subject><subject>thermal conductivity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdUU1vEzEQtRCIhsCZE7Aql162nfHXeqUKqaqgIFXiQHu2HMfbONqsF9tByr_Hq4QE8MFj-b03H28IeYtwidCwq3Ew6RI5pQJaRPqMzLA8aslbeE5mALSpFaf8jLxKaQ0ArVDwkpxRISQKRmfk-mHlQtxVoavG4Idc2TBkY3OVRmdzDMmGcVf5ofzH6HqT3bLalDt606fX5EVXgntziHPy-OXzw-3X-v773bfbm_vaCkVzLVQjYNGhpBIbtoDOOMNFS21T8K50ooziEpoWLC4BJePCduUsltQ4YRWbk0_7vON2sXFL64YcTa_H6Dcm7nQwXv-LDH6ln8IvzRmiKj7Nyfk-QUjZ62R9dnZVJh3KjBopEwi0kC4OVWL4uXUp641P1vW9GVzYJo1SUA4tk7JQP_5HXYdtHIoHhcUVa9pGTFWv9ixbfEzRdceOEfS0Pj2tT5_WVxTv_x70yP-zr0J4dyBMymM6pJppKfCEr1MO8aSXxW_WTPoPe7wzQZun6JN-_EGL5wDIlZLIfgPsULIN</recordid><startdate>20150120</startdate><enddate>20150120</enddate><creator>Lee, Wei-Cheng</creator><creator>Park, Wan Kyu</creator><creator>Arham, Hamood Z.</creator><creator>Greene, Laura H.</creator><creator>Phillips, Philip</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150120</creationdate><title>Theory of point contact spectroscopy in correlated materials</title><author>Lee, Wei-Cheng ; Park, Wan Kyu ; Arham, Hamood Z. ; Greene, Laura H. ; Phillips, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Correlation analysis</topic><topic>defects</topic><topic>Electrodes</topic><topic>electronic nematicity</topic><topic>energy storage (including batteries and capacitors)</topic><topic>INAUGURAL ARTICLE</topic><topic>iron-based superconductors</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Microscopy</topic><topic>non-Fermi liquid</topic><topic>phonons</topic><topic>Physical Sciences</topic><topic>Scattering</topic><topic>Spectrum analysis</topic><topic>spin dynamics</topic><topic>superconductivity</topic><topic>thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Wei-Cheng</creatorcontrib><creatorcontrib>Park, Wan Kyu</creatorcontrib><creatorcontrib>Arham, Hamood Z.</creatorcontrib><creatorcontrib>Greene, Laura H.</creatorcontrib><creatorcontrib>Phillips, Philip</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC). Center for Emergent Superconductivity (CES)</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Wei-Cheng</au><au>Park, Wan Kyu</au><au>Arham, Hamood Z.</au><au>Greene, Laura H.</au><au>Phillips, Philip</au><aucorp>Energy Frontier Research Centers (EFRC). Center for Emergent Superconductivity (CES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of point contact spectroscopy in correlated materials</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-01-20</date><risdate>2015</risdate><volume>112</volume><issue>3</issue><spage>651</spage><epage>656</epage><pages>651-656</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Point-contact spectroscopy is a bulk spectroscopic probe that has been reliably used to map out bosonic and superconducting order parameter spectra via quasiparticle classical and Andreev scattering, respectively. We previously showed this technique to be exquisitely sensitive to an effective density of states specifically arising from non-Fermi liquid behavior, and in the case of the iron pnictides and chalcogenides, electronic nematicity manifesting as a zero bias conductance peak corresponds to an increased effective density of states at the Fermi level arising from orbital fluctuations. We developed a quantum mechanical theory to show how this technique reveals such effective density of states while being insensitive to gapless Fermi surface reconstructions and is therefore a valuable filter for detecting non-Fermi liquid behavior. We developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI / dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A ( ω = eV ) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions under which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. This finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25561532</pmid><doi>10.1073/pnas.1422509112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (3), p.651-656
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_25561532
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Correlation analysis
defects
Electrodes
electronic nematicity
energy storage (including batteries and capacitors)
INAUGURAL ARTICLE
iron-based superconductors
MATERIALS SCIENCE
Metals
Microscopy
non-Fermi liquid
phonons
Physical Sciences
Scattering
Spectrum analysis
spin dynamics
superconductivity
thermal conductivity
title Theory of point contact spectroscopy in correlated materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20point%20contact%20spectroscopy%20in%20correlated%20materials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Wei-Cheng&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC).%20Center%20for%20Emergent%20Superconductivity%20(CES)&rft.date=2015-01-20&rft.volume=112&rft.issue=3&rft.spage=651&rft.epage=656&rft.pages=651-656&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1422509112&rft_dat=%3Cjstor_pubme%3E26459372%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-58750bf1626173b0faea4592c7c58f5618a8460790c1d016345cffffbd2ae5c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648379757&rft_id=info:pmid/25561532&rft_jstor_id=26459372&rfr_iscdi=true