Loading…

Machine Learning Methods for Attack Detection in the Smart Grid

Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2016-08, Vol.27 (8), p.1773-1786
Main Authors: Ozay, Mete, Esnaola, Inaki, Yarman Vural, Fatos Tunay, Kulkarni, Sanjeev R., Poor, H. Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53
cites cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53
container_end_page 1786
container_issue 8
container_start_page 1773
container_title IEEE transaction on neural networks and learning systems
container_volume 27
creator Ozay, Mete
Esnaola, Inaki
Yarman Vural, Fatos Tunay
Kulkarni, Sanjeev R.
Poor, H. Vincent
description Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
doi_str_mv 10.1109/TNNLS.2015.2404803
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25807571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7063894</ieee_id><sourcerecordid>4120637161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1ERau2fwAkZIkLl4QZf-8JVQUKUtoe2krcVl7vmGxJdlvbOfDvcZuQA6f6Mpb8vKPxPIy9RZgjQvPp9upqcTMXgHouFCgH8hU7EmjETEjnXu_v9uchO835HuoxoI1q3rBDoR1YbfGIfb70YTmMxBfk0ziMv_glleXUZx6nxM9K8eE3_0KFQhmmkQ8jL0viN2ufCr9IQ3_CDqJfZTrd1WN29-3r7fn32eL64sf52WIWtLBl5kzfYS87qbouqA4DBO3IKoXWRx2iB1QxkhG6TuYgAkKsODmvOrKdlsfs47bvQ5oeN5RLux5yoNXKjzRtcotO6pp1Bl6AIjrbCGVegIK2RqLGin74D72fNmmsf36mELRqmkqJLRXSlHOi2D6koS7rT4vQPnlrn721T97anbcaer9rvenW1O8j_yxV4N0WGIho_2zBSNco-RdX15kU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805105499</pqid></control><display><type>article</type><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</creator><creatorcontrib>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</creatorcontrib><description>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2404803</identifier><identifier>PMID: 25807571</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Attack detection ; classification ; Distance education ; Distance learning ; Kernel ; Learning ; Learning systems ; Machine learning ; Machine learning algorithms ; Mathematical analysis ; Neural networks ; phase transition ; Prediction algorithms ; Smart grid ; smart grid security ; Smart grids ; sparse optimization ; State vectors ; Statistical learning ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-08, Vol.27 (8), p.1773-1786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</citedby><cites>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7063894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25807571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozay, Mete</creatorcontrib><creatorcontrib>Esnaola, Inaki</creatorcontrib><creatorcontrib>Yarman Vural, Fatos Tunay</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</description><subject>Algorithms</subject><subject>Attack detection</subject><subject>classification</subject><subject>Distance education</subject><subject>Distance learning</subject><subject>Kernel</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>phase transition</subject><subject>Prediction algorithms</subject><subject>Smart grid</subject><subject>smart grid security</subject><subject>Smart grids</subject><subject>sparse optimization</subject><subject>State vectors</subject><subject>Statistical learning</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1ERau2fwAkZIkLl4QZf-8JVQUKUtoe2krcVl7vmGxJdlvbOfDvcZuQA6f6Mpb8vKPxPIy9RZgjQvPp9upqcTMXgHouFCgH8hU7EmjETEjnXu_v9uchO835HuoxoI1q3rBDoR1YbfGIfb70YTmMxBfk0ziMv_glleXUZx6nxM9K8eE3_0KFQhmmkQ8jL0viN2ufCr9IQ3_CDqJfZTrd1WN29-3r7fn32eL64sf52WIWtLBl5kzfYS87qbouqA4DBO3IKoXWRx2iB1QxkhG6TuYgAkKsODmvOrKdlsfs47bvQ5oeN5RLux5yoNXKjzRtcotO6pp1Bl6AIjrbCGVegIK2RqLGin74D72fNmmsf36mELRqmkqJLRXSlHOi2D6koS7rT4vQPnlrn721T97anbcaer9rvenW1O8j_yxV4N0WGIho_2zBSNco-RdX15kU</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ozay, Mete</creator><creator>Esnaola, Inaki</creator><creator>Yarman Vural, Fatos Tunay</creator><creator>Kulkarni, Sanjeev R.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><author>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Attack detection</topic><topic>classification</topic><topic>Distance education</topic><topic>Distance learning</topic><topic>Kernel</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>phase transition</topic><topic>Prediction algorithms</topic><topic>Smart grid</topic><topic>smart grid security</topic><topic>Smart grids</topic><topic>sparse optimization</topic><topic>State vectors</topic><topic>Statistical learning</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozay, Mete</creatorcontrib><creatorcontrib>Esnaola, Inaki</creatorcontrib><creatorcontrib>Yarman Vural, Fatos Tunay</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozay, Mete</au><au>Esnaola, Inaki</au><au>Yarman Vural, Fatos Tunay</au><au>Kulkarni, Sanjeev R.</au><au>Poor, H. Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Attack Detection in the Smart Grid</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-08</date><risdate>2016</risdate><volume>27</volume><issue>8</issue><spage>1773</spage><epage>1786</epage><pages>1773-1786</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25807571</pmid><doi>10.1109/TNNLS.2015.2404803</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2016-08, Vol.27 (8), p.1773-1786
issn 2162-237X
2162-2388
language eng
recordid cdi_pubmed_primary_25807571
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Attack detection
classification
Distance education
Distance learning
Kernel
Learning
Learning systems
Machine learning
Machine learning algorithms
Mathematical analysis
Neural networks
phase transition
Prediction algorithms
Smart grid
smart grid security
Smart grids
sparse optimization
State vectors
Statistical learning
Vectors
title Machine Learning Methods for Attack Detection in the Smart Grid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Attack%20Detection%20in%20the%20Smart%20Grid&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ozay,%20Mete&rft.date=2016-08&rft.volume=27&rft.issue=8&rft.spage=1773&rft.epage=1786&rft.pages=1773-1786&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2404803&rft_dat=%3Cproquest_pubme%3E4120637161%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1805105499&rft_id=info:pmid/25807571&rft_ieee_id=7063894&rfr_iscdi=true