Loading…
Machine Learning Methods for Attack Detection in the Smart Grid
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2016-08, Vol.27 (8), p.1773-1786 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53 |
container_end_page | 1786 |
container_issue | 8 |
container_start_page | 1773 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 27 |
creator | Ozay, Mete Esnaola, Inaki Yarman Vural, Fatos Tunay Kulkarni, Sanjeev R. Poor, H. Vincent |
description | Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework. |
doi_str_mv | 10.1109/TNNLS.2015.2404803 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25807571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7063894</ieee_id><sourcerecordid>4120637161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1ERau2fwAkZIkLl4QZf-8JVQUKUtoe2krcVl7vmGxJdlvbOfDvcZuQA6f6Mpb8vKPxPIy9RZgjQvPp9upqcTMXgHouFCgH8hU7EmjETEjnXu_v9uchO835HuoxoI1q3rBDoR1YbfGIfb70YTmMxBfk0ziMv_glleXUZx6nxM9K8eE3_0KFQhmmkQ8jL0viN2ufCr9IQ3_CDqJfZTrd1WN29-3r7fn32eL64sf52WIWtLBl5kzfYS87qbouqA4DBO3IKoXWRx2iB1QxkhG6TuYgAkKsODmvOrKdlsfs47bvQ5oeN5RLux5yoNXKjzRtcotO6pp1Bl6AIjrbCGVegIK2RqLGin74D72fNmmsf36mELRqmkqJLRXSlHOi2D6koS7rT4vQPnlrn721T97anbcaer9rvenW1O8j_yxV4N0WGIho_2zBSNco-RdX15kU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805105499</pqid></control><display><type>article</type><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</creator><creatorcontrib>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</creatorcontrib><description>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2015.2404803</identifier><identifier>PMID: 25807571</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Attack detection ; classification ; Distance education ; Distance learning ; Kernel ; Learning ; Learning systems ; Machine learning ; Machine learning algorithms ; Mathematical analysis ; Neural networks ; phase transition ; Prediction algorithms ; Smart grid ; smart grid security ; Smart grids ; sparse optimization ; State vectors ; Statistical learning ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2016-08, Vol.27 (8), p.1773-1786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</citedby><cites>FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7063894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25807571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ozay, Mete</creatorcontrib><creatorcontrib>Esnaola, Inaki</creatorcontrib><creatorcontrib>Yarman Vural, Fatos Tunay</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</description><subject>Algorithms</subject><subject>Attack detection</subject><subject>classification</subject><subject>Distance education</subject><subject>Distance learning</subject><subject>Kernel</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>phase transition</subject><subject>Prediction algorithms</subject><subject>Smart grid</subject><subject>smart grid security</subject><subject>Smart grids</subject><subject>sparse optimization</subject><subject>State vectors</subject><subject>Statistical learning</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1ERau2fwAkZIkLl4QZf-8JVQUKUtoe2krcVl7vmGxJdlvbOfDvcZuQA6f6Mpb8vKPxPIy9RZgjQvPp9upqcTMXgHouFCgH8hU7EmjETEjnXu_v9uchO835HuoxoI1q3rBDoR1YbfGIfb70YTmMxBfk0ziMv_glleXUZx6nxM9K8eE3_0KFQhmmkQ8jL0viN2ufCr9IQ3_CDqJfZTrd1WN29-3r7fn32eL64sf52WIWtLBl5kzfYS87qbouqA4DBO3IKoXWRx2iB1QxkhG6TuYgAkKsODmvOrKdlsfs47bvQ5oeN5RLux5yoNXKjzRtcotO6pp1Bl6AIjrbCGVegIK2RqLGin74D72fNmmsf36mELRqmkqJLRXSlHOi2D6koS7rT4vQPnlrn721T97anbcaer9rvenW1O8j_yxV4N0WGIho_2zBSNco-RdX15kU</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ozay, Mete</creator><creator>Esnaola, Inaki</creator><creator>Yarman Vural, Fatos Tunay</creator><creator>Kulkarni, Sanjeev R.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Machine Learning Methods for Attack Detection in the Smart Grid</title><author>Ozay, Mete ; Esnaola, Inaki ; Yarman Vural, Fatos Tunay ; Kulkarni, Sanjeev R. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Attack detection</topic><topic>classification</topic><topic>Distance education</topic><topic>Distance learning</topic><topic>Kernel</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>phase transition</topic><topic>Prediction algorithms</topic><topic>Smart grid</topic><topic>smart grid security</topic><topic>Smart grids</topic><topic>sparse optimization</topic><topic>State vectors</topic><topic>Statistical learning</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozay, Mete</creatorcontrib><creatorcontrib>Esnaola, Inaki</creatorcontrib><creatorcontrib>Yarman Vural, Fatos Tunay</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozay, Mete</au><au>Esnaola, Inaki</au><au>Yarman Vural, Fatos Tunay</au><au>Kulkarni, Sanjeev R.</au><au>Poor, H. Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Attack Detection in the Smart Grid</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2016-08</date><risdate>2016</risdate><volume>27</volume><issue>8</issue><spage>1773</spage><epage>1786</epage><pages>1773-1786</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25807571</pmid><doi>10.1109/TNNLS.2015.2404803</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2016-08, Vol.27 (8), p.1773-1786 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_25807571 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Attack detection classification Distance education Distance learning Kernel Learning Learning systems Machine learning Machine learning algorithms Mathematical analysis Neural networks phase transition Prediction algorithms Smart grid smart grid security Smart grids sparse optimization State vectors Statistical learning Vectors |
title | Machine Learning Methods for Attack Detection in the Smart Grid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Attack%20Detection%20in%20the%20Smart%20Grid&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ozay,%20Mete&rft.date=2016-08&rft.volume=27&rft.issue=8&rft.spage=1773&rft.epage=1786&rft.pages=1773-1786&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2015.2404803&rft_dat=%3Cproquest_pubme%3E4120637161%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-86db1d3b34bbc4b1c0c58e74417af5cfa014ffe62558080f010fd3be8a4be7b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1805105499&rft_id=info:pmid/25807571&rft_ieee_id=7063894&rfr_iscdi=true |