Loading…

Identification Exon Skipping Events From High-Throughput RNA Sequencing Data

The emergence of next-generation high-throughput RNA sequencing (RNA-Seq) provides tremendous opportunities for researchers to analyze alternative splicing on a genome-wide scale. However, accurate identification of alternative splicing events from RNA-Seq data has remained an unresolved challenge i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanobioscience 2015-07, Vol.14 (5), p.562-569
Main Authors: Bai, Yang, Ji, Shufan, Jiang, Qinghua, Wang, Yadong
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3
cites cdi_FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3
container_end_page 569
container_issue 5
container_start_page 562
container_title IEEE transactions on nanobioscience
container_volume 14
creator Bai, Yang
Ji, Shufan
Jiang, Qinghua
Wang, Yadong
description The emergence of next-generation high-throughput RNA sequencing (RNA-Seq) provides tremendous opportunities for researchers to analyze alternative splicing on a genome-wide scale. However, accurate identification of alternative splicing events from RNA-Seq data has remained an unresolved challenge in next-generation sequencing (NGS) studies. Identifying exon skipping (ES) events is an essential part in genome-wide alternative splicing event identification. In this paper, we propose a novel method ESFinder, a random forest classifier to identify ES events from RNA-Seq data. ESFinder conducts thorough studies on predicting features and figures out proper features according to their relevance for ES event identification. Experimental results on real human skeletal muscle and brain RNA-Seq data show that ESFinder could effectively predict ES events with high predictive accuracy. The codes of ESFinder are available at http://mlg.hit.edu.cn/ybai/ES/ESFinder.html.
doi_str_mv 10.1109/TNB.2015.2419812
format magazinearticle
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25935040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7097714</ieee_id><sourcerecordid>1703697910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3</originalsourceid><addsrcrecordid>eNqNkclLw0AUhwdRrNtdECTgxUvqe7Nmji7VCkXB1nPIMmlH2yRmEtH_3gmtPXjyMAvz-95jHh8hpwhDRNBXs6ebIQUUQ8pRR0h3yAEKEYVUMr3b35kM0WcDcujcGwAqKfQ-GVChmQAOB2TymJuytYXNktZWZTD68tv03da1LefB6NOHLrhvqlUwtvNFOFs0VTdf1F0bvDxdB1Pz0Zky69G7pE2OyV6RLJ052ZxH5PV-NLsdh5Pnh8fb60mYcWRtKATyFFAiGMG4QCV0XiRS5aIAihSFSv2rERIZp2i0lDliGhkdmTwVLGVH5HLdt24q_wHXxivrMrNcJqWpOhejYgBcAov-gYLul-L_QZnUSiN49OIP-lZ1Teln7imqIsqV8hSsqaypnGtMEdeNXSXNd4wQ9_5i7y_u_cUbf77kfNO4S1cm3xb8CvPA2Rqwxpht3A-gkLMfmf6aJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1702782477</pqid></control><display><type>magazinearticle</type><title>Identification Exon Skipping Events From High-Throughput RNA Sequencing Data</title><source>IEEE Xplore (Online service)</source><creator>Bai, Yang ; Ji, Shufan ; Jiang, Qinghua ; Wang, Yadong</creator><creatorcontrib>Bai, Yang ; Ji, Shufan ; Jiang, Qinghua ; Wang, Yadong</creatorcontrib><description>The emergence of next-generation high-throughput RNA sequencing (RNA-Seq) provides tremendous opportunities for researchers to analyze alternative splicing on a genome-wide scale. However, accurate identification of alternative splicing events from RNA-Seq data has remained an unresolved challenge in next-generation sequencing (NGS) studies. Identifying exon skipping (ES) events is an essential part in genome-wide alternative splicing event identification. In this paper, we propose a novel method ESFinder, a random forest classifier to identify ES events from RNA-Seq data. ESFinder conducts thorough studies on predicting features and figures out proper features according to their relevance for ES event identification. Experimental results on real human skeletal muscle and brain RNA-Seq data show that ESFinder could effectively predict ES events with high predictive accuracy. The codes of ESFinder are available at http://mlg.hit.edu.cn/ybai/ES/ESFinder.html.</description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2015.2419812</identifier><identifier>PMID: 25935040</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>alternative splicing ; Alternative Splicing - genetics ; Bioinformatics ; Brain ; Brain - metabolism ; classifier ; Computational Biology - methods ; Databases, Genetic ; Decision Trees ; exon skipping ; Exons - genetics ; Feature extraction ; feature selection ; Forests ; Gene sequencing ; Genomics ; High-Throughput Nucleotide Sequencing - methods ; Human ; Humans ; MICROSTRUCTURES ; Muscle, Skeletal - metabolism ; Muscles ; Nanobioscience ; Nanostructure ; Ribonucleic acids ; RNA-Seq ; ROC Curve ; Sequence Analysis, RNA - methods ; Silicon ; Splicing ; YTTRIUM OXIDE</subject><ispartof>IEEE transactions on nanobioscience, 2015-07, Vol.14 (5), p.562-569</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3</citedby><cites>FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7097714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25935040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ji, Shufan</creatorcontrib><creatorcontrib>Jiang, Qinghua</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><title>Identification Exon Skipping Events From High-Throughput RNA Sequencing Data</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description>The emergence of next-generation high-throughput RNA sequencing (RNA-Seq) provides tremendous opportunities for researchers to analyze alternative splicing on a genome-wide scale. However, accurate identification of alternative splicing events from RNA-Seq data has remained an unresolved challenge in next-generation sequencing (NGS) studies. Identifying exon skipping (ES) events is an essential part in genome-wide alternative splicing event identification. In this paper, we propose a novel method ESFinder, a random forest classifier to identify ES events from RNA-Seq data. ESFinder conducts thorough studies on predicting features and figures out proper features according to their relevance for ES event identification. Experimental results on real human skeletal muscle and brain RNA-Seq data show that ESFinder could effectively predict ES events with high predictive accuracy. The codes of ESFinder are available at http://mlg.hit.edu.cn/ybai/ES/ESFinder.html.</description><subject>alternative splicing</subject><subject>Alternative Splicing - genetics</subject><subject>Bioinformatics</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>classifier</subject><subject>Computational Biology - methods</subject><subject>Databases, Genetic</subject><subject>Decision Trees</subject><subject>exon skipping</subject><subject>Exons - genetics</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Forests</subject><subject>Gene sequencing</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Human</subject><subject>Humans</subject><subject>MICROSTRUCTURES</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Nanobioscience</subject><subject>Nanostructure</subject><subject>Ribonucleic acids</subject><subject>RNA-Seq</subject><subject>ROC Curve</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Silicon</subject><subject>Splicing</subject><subject>YTTRIUM OXIDE</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2015</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqNkclLw0AUhwdRrNtdECTgxUvqe7Nmji7VCkXB1nPIMmlH2yRmEtH_3gmtPXjyMAvz-95jHh8hpwhDRNBXs6ebIQUUQ8pRR0h3yAEKEYVUMr3b35kM0WcDcujcGwAqKfQ-GVChmQAOB2TymJuytYXNktZWZTD68tv03da1LefB6NOHLrhvqlUwtvNFOFs0VTdf1F0bvDxdB1Pz0Zky69G7pE2OyV6RLJ052ZxH5PV-NLsdh5Pnh8fb60mYcWRtKATyFFAiGMG4QCV0XiRS5aIAihSFSv2rERIZp2i0lDliGhkdmTwVLGVH5HLdt24q_wHXxivrMrNcJqWpOhejYgBcAov-gYLul-L_QZnUSiN49OIP-lZ1Teln7imqIsqV8hSsqaypnGtMEdeNXSXNd4wQ9_5i7y_u_cUbf77kfNO4S1cm3xb8CvPA2Rqwxpht3A-gkLMfmf6aJA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Bai, Yang</creator><creator>Ji, Shufan</creator><creator>Jiang, Qinghua</creator><creator>Wang, Yadong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7TM</scope><scope>H8G</scope></search><sort><creationdate>20150701</creationdate><title>Identification Exon Skipping Events From High-Throughput RNA Sequencing Data</title><author>Bai, Yang ; Ji, Shufan ; Jiang, Qinghua ; Wang, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alternative splicing</topic><topic>Alternative Splicing - genetics</topic><topic>Bioinformatics</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>classifier</topic><topic>Computational Biology - methods</topic><topic>Databases, Genetic</topic><topic>Decision Trees</topic><topic>exon skipping</topic><topic>Exons - genetics</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Forests</topic><topic>Gene sequencing</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Human</topic><topic>Humans</topic><topic>MICROSTRUCTURES</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Nanobioscience</topic><topic>Nanostructure</topic><topic>Ribonucleic acids</topic><topic>RNA-Seq</topic><topic>ROC Curve</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Silicon</topic><topic>Splicing</topic><topic>YTTRIUM OXIDE</topic><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Ji, Shufan</creatorcontrib><creatorcontrib>Jiang, Qinghua</creatorcontrib><creatorcontrib>Wang, Yadong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Copper Technical Reference Library</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yang</au><au>Ji, Shufan</au><au>Jiang, Qinghua</au><au>Wang, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification Exon Skipping Events From High-Throughput RNA Sequencing Data</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>14</volume><issue>5</issue><spage>562</spage><epage>569</epage><pages>562-569</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract>The emergence of next-generation high-throughput RNA sequencing (RNA-Seq) provides tremendous opportunities for researchers to analyze alternative splicing on a genome-wide scale. However, accurate identification of alternative splicing events from RNA-Seq data has remained an unresolved challenge in next-generation sequencing (NGS) studies. Identifying exon skipping (ES) events is an essential part in genome-wide alternative splicing event identification. In this paper, we propose a novel method ESFinder, a random forest classifier to identify ES events from RNA-Seq data. ESFinder conducts thorough studies on predicting features and figures out proper features according to their relevance for ES event identification. Experimental results on real human skeletal muscle and brain RNA-Seq data show that ESFinder could effectively predict ES events with high predictive accuracy. The codes of ESFinder are available at http://mlg.hit.edu.cn/ybai/ES/ESFinder.html.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25935040</pmid><doi>10.1109/TNB.2015.2419812</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-1241
ispartof IEEE transactions on nanobioscience, 2015-07, Vol.14 (5), p.562-569
issn 1536-1241
1558-2639
language eng
recordid cdi_pubmed_primary_25935040
source IEEE Xplore (Online service)
subjects alternative splicing
Alternative Splicing - genetics
Bioinformatics
Brain
Brain - metabolism
classifier
Computational Biology - methods
Databases, Genetic
Decision Trees
exon skipping
Exons - genetics
Feature extraction
feature selection
Forests
Gene sequencing
Genomics
High-Throughput Nucleotide Sequencing - methods
Human
Humans
MICROSTRUCTURES
Muscle, Skeletal - metabolism
Muscles
Nanobioscience
Nanostructure
Ribonucleic acids
RNA-Seq
ROC Curve
Sequence Analysis, RNA - methods
Silicon
Splicing
YTTRIUM OXIDE
title Identification Exon Skipping Events From High-Throughput RNA Sequencing Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20Exon%20Skipping%20Events%20From%20High-Throughput%20RNA%20Sequencing%20Data&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Bai,%20Yang&rft.date=2015-07-01&rft.volume=14&rft.issue=5&rft.spage=562&rft.epage=569&rft.pages=562-569&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2015.2419812&rft_dat=%3Cproquest_pubme%3E1703697910%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-5514b01610e53451759dfa67d5f0212157b451e5613421e966d11b8e98edb53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1702782477&rft_id=info:pmid/25935040&rft_ieee_id=7097714&rfr_iscdi=true