Loading…

Feature-Based Lucas-Kanade and Active Appearance Models

Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2015-09, Vol.24 (9), p.2617-2632
Main Authors: Antonakos, Epameinondas, Alabort-i-Medina, Joan, Tzimiropoulos, Georgios, Zafeiriou, Stefanos P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3
cites cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3
container_end_page 2632
container_issue 9
container_start_page 2617
container_title IEEE transactions on image processing
container_volume 24
creator Antonakos, Epameinondas
Alabort-i-Medina, Joan
Tzimiropoulos, Georgios
Zafeiriou, Stefanos P.
description Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.
doi_str_mv 10.1109/TIP.2015.2431445
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25966479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7104116</ieee_id><sourcerecordid>1683756485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRrFb3giBZukmdN5nPZS1WixVd1PUwmXmBSJrETCL4701p7epdeOfexSHkBugMgJqHzepjxiiIGeMZcC5OyAUYDimlnJ2OmQqVKuBmQi5j_KIUuAB5TiZMGCm5MhdELdH1Q4fpo4sYkvXgXUxfXe0CJq4Oydz35Q8m87ZF17naY_LWBKziFTkrXBXx-nCn5HP5tFm8pOv359Vivk59JqFPpdBMAtcygBba8JBpyDNqjEchlAoy9xQ0sKJAQOFpwQrFnAx5xpjywmdTcr_fbbvme8DY220ZPVaVq7EZogWpMyUk12JE6R71XRNjh4Vtu3Lrul8L1O502VGX3emyB11j5e6wPuRbDMfCv58RuN0DJSIe3wooB5DZH-yna44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683756485</pqid></control><display><type>article</type><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><source>IEEE Xplore (Online service)</source><creator>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</creator><creatorcontrib>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</creatorcontrib><description>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2431445</identifier><identifier>PMID: 25966479</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active appearance model ; Active Appearance Models ; Algorithms ; Biometric Identification - methods ; Databases, Factual ; dense image feature descriptors ; Face ; Face - anatomy &amp; histology ; face alignment ; face fitting ; Feature extraction ; Humans ; Image Processing, Computer-Assisted - methods ; Integrated circuits ; Lucas-Kanade ; Optimization ; Robustness ; Shape</subject><ispartof>IEEE transactions on image processing, 2015-09, Vol.24 (9), p.2617-2632</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</citedby><cites>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7104116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonakos, Epameinondas</creatorcontrib><creatorcontrib>Alabort-i-Medina, Joan</creatorcontrib><creatorcontrib>Tzimiropoulos, Georgios</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos P.</creatorcontrib><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</description><subject>Active appearance model</subject><subject>Active Appearance Models</subject><subject>Algorithms</subject><subject>Biometric Identification - methods</subject><subject>Databases, Factual</subject><subject>dense image feature descriptors</subject><subject>Face</subject><subject>Face - anatomy &amp; histology</subject><subject>face alignment</subject><subject>face fitting</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Integrated circuits</subject><subject>Lucas-Kanade</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Shape</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRrFb3giBZukmdN5nPZS1WixVd1PUwmXmBSJrETCL4701p7epdeOfexSHkBugMgJqHzepjxiiIGeMZcC5OyAUYDimlnJ2OmQqVKuBmQi5j_KIUuAB5TiZMGCm5MhdELdH1Q4fpo4sYkvXgXUxfXe0CJq4Oydz35Q8m87ZF17naY_LWBKziFTkrXBXx-nCn5HP5tFm8pOv359Vivk59JqFPpdBMAtcygBba8JBpyDNqjEchlAoy9xQ0sKJAQOFpwQrFnAx5xpjywmdTcr_fbbvme8DY220ZPVaVq7EZogWpMyUk12JE6R71XRNjh4Vtu3Lrul8L1O502VGX3emyB11j5e6wPuRbDMfCv58RuN0DJSIe3wooB5DZH-yna44</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Antonakos, Epameinondas</creator><creator>Alabort-i-Medina, Joan</creator><creator>Tzimiropoulos, Georgios</creator><creator>Zafeiriou, Stefanos P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><author>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active appearance model</topic><topic>Active Appearance Models</topic><topic>Algorithms</topic><topic>Biometric Identification - methods</topic><topic>Databases, Factual</topic><topic>dense image feature descriptors</topic><topic>Face</topic><topic>Face - anatomy &amp; histology</topic><topic>face alignment</topic><topic>face fitting</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Integrated circuits</topic><topic>Lucas-Kanade</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonakos, Epameinondas</creatorcontrib><creatorcontrib>Alabort-i-Medina, Joan</creatorcontrib><creatorcontrib>Tzimiropoulos, Georgios</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonakos, Epameinondas</au><au>Alabort-i-Medina, Joan</au><au>Tzimiropoulos, Georgios</au><au>Zafeiriou, Stefanos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Lucas-Kanade and Active Appearance Models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-09</date><risdate>2015</risdate><volume>24</volume><issue>9</issue><spage>2617</spage><epage>2632</epage><pages>2617-2632</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25966479</pmid><doi>10.1109/TIP.2015.2431445</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2015-09, Vol.24 (9), p.2617-2632
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_25966479
source IEEE Xplore (Online service)
subjects Active appearance model
Active Appearance Models
Algorithms
Biometric Identification - methods
Databases, Factual
dense image feature descriptors
Face
Face - anatomy & histology
face alignment
face fitting
Feature extraction
Humans
Image Processing, Computer-Assisted - methods
Integrated circuits
Lucas-Kanade
Optimization
Robustness
Shape
title Feature-Based Lucas-Kanade and Active Appearance Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Lucas-Kanade%20and%20Active%20Appearance%20Models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Antonakos,%20Epameinondas&rft.date=2015-09&rft.volume=24&rft.issue=9&rft.spage=2617&rft.epage=2632&rft.pages=2617-2632&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2431445&rft_dat=%3Cproquest_pubme%3E1683756485%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683756485&rft_id=info:pmid/25966479&rft_ieee_id=7104116&rfr_iscdi=true