Loading…
Feature-Based Lucas-Kanade and Active Appearance Models
Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely...
Saved in:
Published in: | IEEE transactions on image processing 2015-09, Vol.24 (9), p.2617-2632 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3 |
container_end_page | 2632 |
container_issue | 9 |
container_start_page | 2617 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Antonakos, Epameinondas Alabort-i-Medina, Joan Tzimiropoulos, Georgios Zafeiriou, Stefanos P. |
description | Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases. |
doi_str_mv | 10.1109/TIP.2015.2431445 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_25966479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7104116</ieee_id><sourcerecordid>1683756485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRrFb3giBZukmdN5nPZS1WixVd1PUwmXmBSJrETCL4701p7epdeOfexSHkBugMgJqHzepjxiiIGeMZcC5OyAUYDimlnJ2OmQqVKuBmQi5j_KIUuAB5TiZMGCm5MhdELdH1Q4fpo4sYkvXgXUxfXe0CJq4Oydz35Q8m87ZF17naY_LWBKziFTkrXBXx-nCn5HP5tFm8pOv359Vivk59JqFPpdBMAtcygBba8JBpyDNqjEchlAoy9xQ0sKJAQOFpwQrFnAx5xpjywmdTcr_fbbvme8DY220ZPVaVq7EZogWpMyUk12JE6R71XRNjh4Vtu3Lrul8L1O502VGX3emyB11j5e6wPuRbDMfCv58RuN0DJSIe3wooB5DZH-yna44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683756485</pqid></control><display><type>article</type><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><source>IEEE Xplore (Online service)</source><creator>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</creator><creatorcontrib>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</creatorcontrib><description>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2015.2431445</identifier><identifier>PMID: 25966479</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active appearance model ; Active Appearance Models ; Algorithms ; Biometric Identification - methods ; Databases, Factual ; dense image feature descriptors ; Face ; Face - anatomy & histology ; face alignment ; face fitting ; Feature extraction ; Humans ; Image Processing, Computer-Assisted - methods ; Integrated circuits ; Lucas-Kanade ; Optimization ; Robustness ; Shape</subject><ispartof>IEEE transactions on image processing, 2015-09, Vol.24 (9), p.2617-2632</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</citedby><cites>FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7104116$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25966479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Antonakos, Epameinondas</creatorcontrib><creatorcontrib>Alabort-i-Medina, Joan</creatorcontrib><creatorcontrib>Tzimiropoulos, Georgios</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos P.</creatorcontrib><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</description><subject>Active appearance model</subject><subject>Active Appearance Models</subject><subject>Algorithms</subject><subject>Biometric Identification - methods</subject><subject>Databases, Factual</subject><subject>dense image feature descriptors</subject><subject>Face</subject><subject>Face - anatomy & histology</subject><subject>face alignment</subject><subject>face fitting</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Integrated circuits</subject><subject>Lucas-Kanade</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Shape</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRrFb3giBZukmdN5nPZS1WixVd1PUwmXmBSJrETCL4701p7epdeOfexSHkBugMgJqHzepjxiiIGeMZcC5OyAUYDimlnJ2OmQqVKuBmQi5j_KIUuAB5TiZMGCm5MhdELdH1Q4fpo4sYkvXgXUxfXe0CJq4Oydz35Q8m87ZF17naY_LWBKziFTkrXBXx-nCn5HP5tFm8pOv359Vivk59JqFPpdBMAtcygBba8JBpyDNqjEchlAoy9xQ0sKJAQOFpwQrFnAx5xpjywmdTcr_fbbvme8DY220ZPVaVq7EZogWpMyUk12JE6R71XRNjh4Vtu3Lrul8L1O502VGX3emyB11j5e6wPuRbDMfCv58RuN0DJSIe3wooB5DZH-yna44</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Antonakos, Epameinondas</creator><creator>Alabort-i-Medina, Joan</creator><creator>Tzimiropoulos, Georgios</creator><creator>Zafeiriou, Stefanos P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Feature-Based Lucas-Kanade and Active Appearance Models</title><author>Antonakos, Epameinondas ; Alabort-i-Medina, Joan ; Tzimiropoulos, Georgios ; Zafeiriou, Stefanos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Active appearance model</topic><topic>Active Appearance Models</topic><topic>Algorithms</topic><topic>Biometric Identification - methods</topic><topic>Databases, Factual</topic><topic>dense image feature descriptors</topic><topic>Face</topic><topic>Face - anatomy & histology</topic><topic>face alignment</topic><topic>face fitting</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Integrated circuits</topic><topic>Lucas-Kanade</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonakos, Epameinondas</creatorcontrib><creatorcontrib>Alabort-i-Medina, Joan</creatorcontrib><creatorcontrib>Tzimiropoulos, Georgios</creatorcontrib><creatorcontrib>Zafeiriou, Stefanos P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonakos, Epameinondas</au><au>Alabort-i-Medina, Joan</au><au>Tzimiropoulos, Georgios</au><au>Zafeiriou, Stefanos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Lucas-Kanade and Active Appearance Models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-09</date><risdate>2015</risdate><volume>24</volume><issue>9</issue><spage>2617</spage><epage>2632</epage><pages>2617-2632</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Lucas-Kanade and active appearance models are among the most commonly used methods for image alignment and facial fitting, respectively. They both utilize nonlinear gradient descent, which is usually applied on intensity values. In this paper, we propose the employment of highly descriptive, densely sampled image features for both problems. We show that the strategy of warping the multichannel dense feature image at each iteration is more beneficial than extracting features after warping the intensity image at each iteration. Motivated by this observation, we demonstrate robust and accurate alignment and fitting performance using a variety of powerful feature descriptors. Especially with the employment of histograms of oriented gradient and scale-invariant feature transform features, our method significantly outperforms the current state-of-the-art results on in-the-wild databases.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25966479</pmid><doi>10.1109/TIP.2015.2431445</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-09, Vol.24 (9), p.2617-2632 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_25966479 |
source | IEEE Xplore (Online service) |
subjects | Active appearance model Active Appearance Models Algorithms Biometric Identification - methods Databases, Factual dense image feature descriptors Face Face - anatomy & histology face alignment face fitting Feature extraction Humans Image Processing, Computer-Assisted - methods Integrated circuits Lucas-Kanade Optimization Robustness Shape |
title | Feature-Based Lucas-Kanade and Active Appearance Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A30%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Lucas-Kanade%20and%20Active%20Appearance%20Models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Antonakos,%20Epameinondas&rft.date=2015-09&rft.volume=24&rft.issue=9&rft.spage=2617&rft.epage=2632&rft.pages=2617-2632&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2015.2431445&rft_dat=%3Cproquest_pubme%3E1683756485%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-658261486d185894d381b3099ce5577d6bc01812ffe1e5c0f2f72a6db3227c5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1683756485&rft_id=info:pmid/25966479&rft_ieee_id=7104116&rfr_iscdi=true |