Loading…

Metasurface transformation for surface wave control

Metasurfaces (MTSs) constitute a class of thin metamaterials used for controlling plane waves and surface waves (SWs). At microwave frequencies, they are constituted by a metallic texture with elements of sub-wavelength size printed on thin grounded dielectric substrates. These structures support th...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2015-08, Vol.373 (2049), p.20140355
Main Authors: Martini, E., Mencagli, M., Maci, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metasurfaces (MTSs) constitute a class of thin metamaterials used for controlling plane waves and surface waves (SWs). At microwave frequencies, they are constituted by a metallic texture with elements of sub-wavelength size printed on thin grounded dielectric substrates. These structures support the propagation of SWs. By averaging the tangential fields, the MTSs can be characterized through homogenized isotropic or anisotropic boundary conditions, which can be described through a homogeneous equivalent impedance. This impedance can be spatially modulated by locally changing the size/orientation of the texture elements. This allows for a deformation of the SW wavefront which addresses the local wavevector along not-rectilinear paths. The effect of the MTS modulation can be analysed in the framework of transformation optics. This article reviews theory and implementation of this MTS transformation and shows some examples at microwave frequencies.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2014.0355