Loading…

Essential role for polymerase specialization in cellular nonhomologous end joining

Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (33), p.E4537-E4545
Main Authors: Pryor, John M., Waters, Crystal A., Aza, Ana, Asagoshi, Kenjiro, Strom, Christina, Mieczkowski, Piotr A., Blanco, Luis, Ramsden, Dale A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3
cites cdi_FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3
container_end_page E4545
container_issue 33
container_start_page E4537
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Pryor, John M.
Waters, Crystal A.
Aza, Ana
Asagoshi, Kenjiro
Strom, Christina
Mieczkowski, Piotr A.
Blanco, Luis
Ramsden, Dale A.
description Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate in cells, we show each polymerase is uniquely proficient in different contexts. The templating nucleotide is also selected differently, with Pol μ using the unpaired base adjacent to the downstream 5′ phosphate even when there are available template sites further upstream of this position; this makes Pol μ more flexible but also less accurate than Pol λ. Loss of either polymerase alone consequently has clear and distinguishable effects on the fidelity of repair, but end remodeling by cellular nucleases and the remaining polymerase helps mitigate the effects on overall repair efficiency. Accordingly, when cells are deficient in both polymerases there is synergistic impact on NHEJ efficiency, both in terms of repair of defined substrates and cellular resistance to ionizing radiation. Pol μ and Pol λ thus provide distinct solutions to a problem for DNA synthesis that is unique to this pathway and play a key role in conferring on NHEJ the flexibility required for accurate and efficient repair.
doi_str_mv 10.1073/pnas.1505805112
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26240371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464939</jstor_id><sourcerecordid>26464939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3</originalsourceid><addsrcrecordid>eNpdks9rFDEYhoNY7Fo9e1ICXrxMm9-ZXAQpqxYKBdFzyCSZbZaZZExmhPrXm2HXtfYQcvie7yUPbwB4g9ElRpJeTdGUS8wRbxHHmDwDG4wUbgRT6DnYIERk0zLCzsHLUvYIIVXBF-CcCMIQlXgDvm1L8XEOZoA5DR72KcMpDQ-jz6Z4WCZv6yz8NnNIEYYIrR-GZTAZxhTv05iGtEtLgT46uE8hhrh7Bc56MxT_-nhfgB-ft9-vvza3d19urj_dNpZTNjemFU440zNlJLcdc8x1zKj1eGtYj6SlvXdCqd5zRXyHneeOdJYy0TrW0Qvw8ZA7Ld3ona0a2Qx6ymE0-UEnE_T_kxju9S790owzSYSoAR-OATn9XHyZ9RjK6meir04aS8QlaZlSFX3_BN2nJceqt1JCSEJVW6mrA2VzKiX7_vQYjPTal1770v_6qhvvHjuc-L8FVQAegXXzFIeJplRvGaeyIm8PyL7MKT-KYPUbUEX_AIfzqLU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706672398</pqid></control><display><type>article</type><title>Essential role for polymerase specialization in cellular nonhomologous end joining</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals</source><creator>Pryor, John M. ; Waters, Crystal A. ; Aza, Ana ; Asagoshi, Kenjiro ; Strom, Christina ; Mieczkowski, Piotr A. ; Blanco, Luis ; Ramsden, Dale A.</creator><creatorcontrib>Pryor, John M. ; Waters, Crystal A. ; Aza, Ana ; Asagoshi, Kenjiro ; Strom, Christina ; Mieczkowski, Piotr A. ; Blanco, Luis ; Ramsden, Dale A.</creatorcontrib><description>Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate in cells, we show each polymerase is uniquely proficient in different contexts. The templating nucleotide is also selected differently, with Pol μ using the unpaired base adjacent to the downstream 5′ phosphate even when there are available template sites further upstream of this position; this makes Pol μ more flexible but also less accurate than Pol λ. Loss of either polymerase alone consequently has clear and distinguishable effects on the fidelity of repair, but end remodeling by cellular nucleases and the remaining polymerase helps mitigate the effects on overall repair efficiency. Accordingly, when cells are deficient in both polymerases there is synergistic impact on NHEJ efficiency, both in terms of repair of defined substrates and cellular resistance to ionizing radiation. Pol μ and Pol λ thus provide distinct solutions to a problem for DNA synthesis that is unique to this pathway and play a key role in conferring on NHEJ the flexibility required for accurate and efficient repair.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1505805112</identifier><identifier>PMID: 26240371</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Biosynthesis ; Cell Proliferation ; Cells ; DNA - chemistry ; DNA Damage ; DNA End-Joining Repair ; DNA polymerase ; DNA Polymerase beta - chemistry ; DNA repair ; DNA-Directed DNA Polymerase - chemistry ; Dose-Response Relationship, Radiation ; Fibroblasts - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nucleotides - chemistry ; PNAS Plus ; Radiation, Ionizing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (33), p.E4537-E4545</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 18, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3</citedby><cites>FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464939$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464939$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26240371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pryor, John M.</creatorcontrib><creatorcontrib>Waters, Crystal A.</creatorcontrib><creatorcontrib>Aza, Ana</creatorcontrib><creatorcontrib>Asagoshi, Kenjiro</creatorcontrib><creatorcontrib>Strom, Christina</creatorcontrib><creatorcontrib>Mieczkowski, Piotr A.</creatorcontrib><creatorcontrib>Blanco, Luis</creatorcontrib><creatorcontrib>Ramsden, Dale A.</creatorcontrib><title>Essential role for polymerase specialization in cellular nonhomologous end joining</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate in cells, we show each polymerase is uniquely proficient in different contexts. The templating nucleotide is also selected differently, with Pol μ using the unpaired base adjacent to the downstream 5′ phosphate even when there are available template sites further upstream of this position; this makes Pol μ more flexible but also less accurate than Pol λ. Loss of either polymerase alone consequently has clear and distinguishable effects on the fidelity of repair, but end remodeling by cellular nucleases and the remaining polymerase helps mitigate the effects on overall repair efficiency. Accordingly, when cells are deficient in both polymerases there is synergistic impact on NHEJ efficiency, both in terms of repair of defined substrates and cellular resistance to ionizing radiation. Pol μ and Pol λ thus provide distinct solutions to a problem for DNA synthesis that is unique to this pathway and play a key role in conferring on NHEJ the flexibility required for accurate and efficient repair.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell Proliferation</subject><subject>Cells</subject><subject>DNA - chemistry</subject><subject>DNA Damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA polymerase</subject><subject>DNA Polymerase beta - chemistry</subject><subject>DNA repair</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Fibroblasts - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Nucleotides - chemistry</subject><subject>PNAS Plus</subject><subject>Radiation, Ionizing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdks9rFDEYhoNY7Fo9e1ICXrxMm9-ZXAQpqxYKBdFzyCSZbZaZZExmhPrXm2HXtfYQcvie7yUPbwB4g9ElRpJeTdGUS8wRbxHHmDwDG4wUbgRT6DnYIERk0zLCzsHLUvYIIVXBF-CcCMIQlXgDvm1L8XEOZoA5DR72KcMpDQ-jz6Z4WCZv6yz8NnNIEYYIrR-GZTAZxhTv05iGtEtLgT46uE8hhrh7Bc56MxT_-nhfgB-ft9-vvza3d19urj_dNpZTNjemFU440zNlJLcdc8x1zKj1eGtYj6SlvXdCqd5zRXyHneeOdJYy0TrW0Qvw8ZA7Ld3ona0a2Qx6ymE0-UEnE_T_kxju9S790owzSYSoAR-OATn9XHyZ9RjK6meir04aS8QlaZlSFX3_BN2nJceqt1JCSEJVW6mrA2VzKiX7_vQYjPTal1770v_6qhvvHjuc-L8FVQAegXXzFIeJplRvGaeyIm8PyL7MKT-KYPUbUEX_AIfzqLU</recordid><startdate>20150818</startdate><enddate>20150818</enddate><creator>Pryor, John M.</creator><creator>Waters, Crystal A.</creator><creator>Aza, Ana</creator><creator>Asagoshi, Kenjiro</creator><creator>Strom, Christina</creator><creator>Mieczkowski, Piotr A.</creator><creator>Blanco, Luis</creator><creator>Ramsden, Dale A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150818</creationdate><title>Essential role for polymerase specialization in cellular nonhomologous end joining</title><author>Pryor, John M. ; Waters, Crystal A. ; Aza, Ana ; Asagoshi, Kenjiro ; Strom, Christina ; Mieczkowski, Piotr A. ; Blanco, Luis ; Ramsden, Dale A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell Proliferation</topic><topic>Cells</topic><topic>DNA - chemistry</topic><topic>DNA Damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA polymerase</topic><topic>DNA Polymerase beta - chemistry</topic><topic>DNA repair</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Fibroblasts - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Nucleotides - chemistry</topic><topic>PNAS Plus</topic><topic>Radiation, Ionizing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryor, John M.</creatorcontrib><creatorcontrib>Waters, Crystal A.</creatorcontrib><creatorcontrib>Aza, Ana</creatorcontrib><creatorcontrib>Asagoshi, Kenjiro</creatorcontrib><creatorcontrib>Strom, Christina</creatorcontrib><creatorcontrib>Mieczkowski, Piotr A.</creatorcontrib><creatorcontrib>Blanco, Luis</creatorcontrib><creatorcontrib>Ramsden, Dale A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryor, John M.</au><au>Waters, Crystal A.</au><au>Aza, Ana</au><au>Asagoshi, Kenjiro</au><au>Strom, Christina</au><au>Mieczkowski, Piotr A.</au><au>Blanco, Luis</au><au>Ramsden, Dale A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role for polymerase specialization in cellular nonhomologous end joining</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-18</date><risdate>2015</risdate><volume>112</volume><issue>33</issue><spage>E4537</spage><epage>E4545</epage><pages>E4537-E4545</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate in cells, we show each polymerase is uniquely proficient in different contexts. The templating nucleotide is also selected differently, with Pol μ using the unpaired base adjacent to the downstream 5′ phosphate even when there are available template sites further upstream of this position; this makes Pol μ more flexible but also less accurate than Pol λ. Loss of either polymerase alone consequently has clear and distinguishable effects on the fidelity of repair, but end remodeling by cellular nucleases and the remaining polymerase helps mitigate the effects on overall repair efficiency. Accordingly, when cells are deficient in both polymerases there is synergistic impact on NHEJ efficiency, both in terms of repair of defined substrates and cellular resistance to ionizing radiation. Pol μ and Pol λ thus provide distinct solutions to a problem for DNA synthesis that is unique to this pathway and play a key role in conferring on NHEJ the flexibility required for accurate and efficient repair.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26240371</pmid><doi>10.1073/pnas.1505805112</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (33), p.E4537-E4545
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_26240371
source Open Access: PubMed Central; JSTOR Archival Journals
subjects Animals
Biological Sciences
Biosynthesis
Cell Proliferation
Cells
DNA - chemistry
DNA Damage
DNA End-Joining Repair
DNA polymerase
DNA Polymerase beta - chemistry
DNA repair
DNA-Directed DNA Polymerase - chemistry
Dose-Response Relationship, Radiation
Fibroblasts - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Nucleotides - chemistry
PNAS Plus
Radiation, Ionizing
title Essential role for polymerase specialization in cellular nonhomologous end joining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20for%20polymerase%20specialization%20in%20cellular%20nonhomologous%20end%20joining&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pryor,%20John%20M.&rft.date=2015-08-18&rft.volume=112&rft.issue=33&rft.spage=E4537&rft.epage=E4545&rft.pages=E4537-E4545&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1505805112&rft_dat=%3Cjstor_pubme%3E26464939%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-a86d6daf49a75cb4d4db4a9b4a9eca4f07c3fed699fe592eb1de5d2bc3468d4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1706672398&rft_id=info:pmid/26240371&rft_jstor_id=26464939&rfr_iscdi=true