Loading…
Reference dosimetry in the presence of magnetic fields: conditions to validate Monte Carlo simulations
With the advent of MRI-guided radiotherapy, reference dosimetry must be thoroughly addressed to account for the effects of the magnetic field on absorbed dose to water and on detector dose response. While Monte Carlo plays an essential role in reference dosimetry, it is also crucial for determining...
Saved in:
Published in: | Physics in medicine & biology 2015-09, Vol.60 (17), p.6639-6654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the advent of MRI-guided radiotherapy, reference dosimetry must be thoroughly addressed to account for the effects of the magnetic field on absorbed dose to water and on detector dose response. While Monte Carlo plays an essential role in reference dosimetry, it is also crucial for determining quality correction factors in these new conditions. The Fano cavity test is recognized as fundamental to validate Monte Carlo transport algorithms. In the presence of magnetic fields, it is necessary to define special conditions under which such a test can be performed. The present theoretical study proposes two conditions in which the validity of Fano's theorem is demonstrated in the presence of a magnetic field and the analytic expression of energy deposition is verified. It is concluded that the proposed conditions form a valid basis for two types of Fano cavity tests in the presence of a magnetic field. |
---|---|
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/0031-9155/60/17/6639 |