Loading…

Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions

In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese wa...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2015-12, Vol.9 (12), p.12473
Main Authors: Delikanli, Savas, Akgul, Mehmet Zafer, Murphy, Joseph R, Barman, Biplob, Tsai, Yutsung, Scrace, Thomas, Zhang, Peiyao, Bozok, Berkay, Hernández-Martínez, Pedro Ludwig, Christodoulides, Joseph, Cartwright, Alexander N, Petrou, Athos, Demir, Hilmi Volkan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page 12473
container_title ACS nano
container_volume 9
creator Delikanli, Savas
Akgul, Mehmet Zafer
Murphy, Joseph R
Barman, Biplob
Tsai, Yutsung
Scrace, Thomas
Zhang, Peiyao
Bozok, Berkay
Hernández-Martínez, Pedro Ludwig
Christodoulides, Joseph
Cartwright, Alexander N
Petrou, Athos
Demir, Hilmi Volkan
description In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn(2+)-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices.
doi_str_mv 10.1021/acsnano.5b05903
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_26567872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26567872</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-8622a1e89ba4e937f9a834bd8721e70cc813c486ab44d803bbce0aa5396c8dd93</originalsourceid><addsrcrecordid>eNo1j0tLAzEUhYMgtlbX7iRLRabNYyaTLGWsD2gRsaK7cvNoO5JmhmQG9N87Rd3ce87l8HEuQheUTClhdAYmBQjNtNCkUIQfoTFVXGREio8ROk3pk5CilKU4QSMmCjFINkZpGa7YzXV217TO4sq-utkwcNVEN1v2vqvTznk_eO-b2oLHLz2Ert_j9-Gc8DyA9nXY4lV_UA5XEGPt4oE35PD8y-wgbB1-Cp2LYLq6CekMHW_AJ3f-tyfo7X6-qh6zxfPDU3W7yFrKRJdJwRhQJ5WG3ClebhRInms79KauJMZIyk0uBeg8t5JwrY0jAAVXwkhrFZ-gy19u2-u9s-s21nuI3-v_7_kPi1xcIw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Delikanli, Savas ; Akgul, Mehmet Zafer ; Murphy, Joseph R ; Barman, Biplob ; Tsai, Yutsung ; Scrace, Thomas ; Zhang, Peiyao ; Bozok, Berkay ; Hernández-Martínez, Pedro Ludwig ; Christodoulides, Joseph ; Cartwright, Alexander N ; Petrou, Athos ; Demir, Hilmi Volkan</creator><creatorcontrib>Delikanli, Savas ; Akgul, Mehmet Zafer ; Murphy, Joseph R ; Barman, Biplob ; Tsai, Yutsung ; Scrace, Thomas ; Zhang, Peiyao ; Bozok, Berkay ; Hernández-Martínez, Pedro Ludwig ; Christodoulides, Joseph ; Cartwright, Alexander N ; Petrou, Athos ; Demir, Hilmi Volkan</creatorcontrib><description>In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn(2+)-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices.</description><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b05903</identifier><identifier>PMID: 26567872</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2015-12, Vol.9 (12), p.12473</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26567872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Akgul, Mehmet Zafer</creatorcontrib><creatorcontrib>Murphy, Joseph R</creatorcontrib><creatorcontrib>Barman, Biplob</creatorcontrib><creatorcontrib>Tsai, Yutsung</creatorcontrib><creatorcontrib>Scrace, Thomas</creatorcontrib><creatorcontrib>Zhang, Peiyao</creatorcontrib><creatorcontrib>Bozok, Berkay</creatorcontrib><creatorcontrib>Hernández-Martínez, Pedro Ludwig</creatorcontrib><creatorcontrib>Christodoulides, Joseph</creatorcontrib><creatorcontrib>Cartwright, Alexander N</creatorcontrib><creatorcontrib>Petrou, Athos</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><title>Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn(2+)-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices.</description><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1j0tLAzEUhYMgtlbX7iRLRabNYyaTLGWsD2gRsaK7cvNoO5JmhmQG9N87Rd3ce87l8HEuQheUTClhdAYmBQjNtNCkUIQfoTFVXGREio8ROk3pk5CilKU4QSMmCjFINkZpGa7YzXV217TO4sq-utkwcNVEN1v2vqvTznk_eO-b2oLHLz2Ert_j9-Gc8DyA9nXY4lV_UA5XEGPt4oE35PD8y-wgbB1-Cp2LYLq6CekMHW_AJ3f-tyfo7X6-qh6zxfPDU3W7yFrKRJdJwRhQJ5WG3ClebhRInms79KauJMZIyk0uBeg8t5JwrY0jAAVXwkhrFZ-gy19u2-u9s-s21nuI3-v_7_kPi1xcIw</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Delikanli, Savas</creator><creator>Akgul, Mehmet Zafer</creator><creator>Murphy, Joseph R</creator><creator>Barman, Biplob</creator><creator>Tsai, Yutsung</creator><creator>Scrace, Thomas</creator><creator>Zhang, Peiyao</creator><creator>Bozok, Berkay</creator><creator>Hernández-Martínez, Pedro Ludwig</creator><creator>Christodoulides, Joseph</creator><creator>Cartwright, Alexander N</creator><creator>Petrou, Athos</creator><creator>Demir, Hilmi Volkan</creator><scope>NPM</scope></search><sort><creationdate>20151222</creationdate><title>Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions</title><author>Delikanli, Savas ; Akgul, Mehmet Zafer ; Murphy, Joseph R ; Barman, Biplob ; Tsai, Yutsung ; Scrace, Thomas ; Zhang, Peiyao ; Bozok, Berkay ; Hernández-Martínez, Pedro Ludwig ; Christodoulides, Joseph ; Cartwright, Alexander N ; Petrou, Athos ; Demir, Hilmi Volkan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-8622a1e89ba4e937f9a834bd8721e70cc813c486ab44d803bbce0aa5396c8dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delikanli, Savas</creatorcontrib><creatorcontrib>Akgul, Mehmet Zafer</creatorcontrib><creatorcontrib>Murphy, Joseph R</creatorcontrib><creatorcontrib>Barman, Biplob</creatorcontrib><creatorcontrib>Tsai, Yutsung</creatorcontrib><creatorcontrib>Scrace, Thomas</creatorcontrib><creatorcontrib>Zhang, Peiyao</creatorcontrib><creatorcontrib>Bozok, Berkay</creatorcontrib><creatorcontrib>Hernández-Martínez, Pedro Ludwig</creatorcontrib><creatorcontrib>Christodoulides, Joseph</creatorcontrib><creatorcontrib>Cartwright, Alexander N</creatorcontrib><creatorcontrib>Petrou, Athos</creatorcontrib><creatorcontrib>Demir, Hilmi Volkan</creatorcontrib><collection>PubMed</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delikanli, Savas</au><au>Akgul, Mehmet Zafer</au><au>Murphy, Joseph R</au><au>Barman, Biplob</au><au>Tsai, Yutsung</au><au>Scrace, Thomas</au><au>Zhang, Peiyao</au><au>Bozok, Berkay</au><au>Hernández-Martínez, Pedro Ludwig</au><au>Christodoulides, Joseph</au><au>Cartwright, Alexander N</au><au>Petrou, Athos</au><au>Demir, Hilmi Volkan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-12-22</date><risdate>2015</risdate><volume>9</volume><issue>12</issue><spage>12473</spage><pages>12473-</pages><eissn>1936-086X</eissn><abstract>In this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn(2+)-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn(2+)-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices.</abstract><cop>United States</cop><pmid>26567872</pmid><doi>10.1021/acsnano.5b05903</doi></addata></record>
fulltext fulltext
identifier EISSN: 1936-086X
ispartof ACS nano, 2015-12, Vol.9 (12), p.12473
issn 1936-086X
language eng
recordid cdi_pubmed_primary_26567872
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn(2+)-Doped%20CdSe/CdS%20Core/Multishell%20Colloidal%20Quantum%20Wells%20Enabling%20Tunable%20Carrier-Dopant%20Exchange%20Interactions&rft.jtitle=ACS%20nano&rft.au=Delikanli,%20Savas&rft.date=2015-12-22&rft.volume=9&rft.issue=12&rft.spage=12473&rft.pages=12473-&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b05903&rft_dat=%3Cpubmed%3E26567872%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p126t-8622a1e89ba4e937f9a834bd8721e70cc813c486ab44d803bbce0aa5396c8dd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26567872&rfr_iscdi=true