Loading…
Electric field control of magnetic properties and electron transport in BaTiO3-based multiferroic heterostructures
In this paper, we report on a purely electric mechanism for achieving the electric control of the interfacial spin polarization and magnetoresistance in multiferroic tunneling junctions. We investigate micrometric devices based on the Co/Fe/BaTiO3/La0.7Sr0.3MnO3 heterostructure, where Co/Fe and La0....
Saved in:
Published in: | Journal of physics. Condensed matter 2015-12, Vol.27 (50), p.504004-504004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we report on a purely electric mechanism for achieving the electric control of the interfacial spin polarization and magnetoresistance in multiferroic tunneling junctions. We investigate micrometric devices based on the Co/Fe/BaTiO3/La0.7Sr0.3MnO3 heterostructure, where Co/Fe and La0.7Sr0.3MnO3 are the magnetic electrodes and BaTiO3 acts both as a ferroelectric element and tunneling barrier. We show that, at 20 K, devices with a 2 nm thick BaTiO3 barrier present both tunneling electroresistance (TER = 12 ± 0.1%) and tunneling magnetoresistance (TMR). The latter depends on the direction of the BaTiO3 polarization, displaying a sizable change of the TMR from −0.32 ± 0.05% for the polarization pointing towards Fe, to −0.12 ± 0.05% for the opposite direction. This is consistent with the on-off switching of the Fe magnetization at the Fe/BaTiO3 interface, driven by the BaTiO3 polarization, we have previously demonstrated in x-ray magnetic circular dichroism experiments. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/27/50/504004 |