Loading…

Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking

Given a set of detections, detected at each time instant independently, we investigate how to associate them across time. This is done by propagating labels on a set of graphs, each graph capturing how either the spatio-temporal or the appearance cues promote the assignment of identical or distinct...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2017-01, Vol.39 (1), p.61-74
Main Authors: Kumar K C, Amit, Jacques, Laurent, De Vleeschouwer, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63
cites cdi_FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63
container_end_page 74
container_issue 1
container_start_page 61
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 39
creator Kumar K C, Amit
Jacques, Laurent
De Vleeschouwer, Christophe
description Given a set of detections, detected at each time instant independently, we investigate how to associate them across time. This is done by propagating labels on a set of graphs, each graph capturing how either the spatio-temporal or the appearance cues promote the assignment of identical or distinct labels to a pair of detections. The graph construction is motivated by a locally linear embedding of the detection features. Interestingly, the neighborhood of a node in appearance graph is defined to include all the nodes for which the appearance feature is available (even if they are temporally distant). This gives our framework the uncommon ability to exploit the appearance features that are available only sporadically. Once the graphs have been defined, multi-object tracking is formulated as the problem of finding a label assignment that is consistent with the constraints captured each graph, which results into a difference of convex (DC) program. We propose to decompose the global objective function into node-wise sub-problems. This not only allows a computationally efficient solution, but also supports an incremental and scalable construction of the graph, thereby making the framework applicable to large graphs and practical tracking scenarios. Moreover, it opens the possibility of parallel implementation.
doi_str_mv 10.1109/TPAMI.2016.2533391
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26915115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7415947</ieee_id><sourcerecordid>1846529371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63</originalsourceid><addsrcrecordid>eNpdkE1P3DAQhi0EKlvoH6ASstRLL1k8HtuJj2ihFGkRHJZzcByHeskXdlKp_76mu-WANNIc3mdGMw8hZ8CWAExfbB4u726XnIFacomIGg7IAjTqDCXqQ7JICc-KghfH5HOMW8ZASIafyDFXGiSAXJCnKx9t8J3vzeR_O2r6ml43jbfe9RNdm8q19CEMo3lO-dDTVKuhG1vXpdyEP_QmmPFXpM0Q6N3cTj67r7bOTnQTjH3x_fMpOWpMG92XfT8hjz-uN6uf2fr-5nZ1uc4sajll6ExRmdxyJVnFJYe8SEEtdWNRWeEAa1ZXSmOFldBQ89zmQmisJVoEp_CEfN_tHcPwOrs4lV36zLWt6d0wxxIKrpQUBecJ_fYB3Q5z6NN1iRJKco05JIrvKBuGGINryjF5Si-XwMo3_-U__-Wb_3LvPw2d71fPVefq95H_whPwdQd459x7nAuQWuT4F2NdiOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846529371</pqid></control><display><type>article</type><title>Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kumar K C, Amit ; Jacques, Laurent ; De Vleeschouwer, Christophe</creator><creatorcontrib>Kumar K C, Amit ; Jacques, Laurent ; De Vleeschouwer, Christophe</creatorcontrib><description>Given a set of detections, detected at each time instant independently, we investigate how to associate them across time. This is done by propagating labels on a set of graphs, each graph capturing how either the spatio-temporal or the appearance cues promote the assignment of identical or distinct labels to a pair of detections. The graph construction is motivated by a locally linear embedding of the detection features. Interestingly, the neighborhood of a node in appearance graph is defined to include all the nodes for which the appearance feature is available (even if they are temporally distant). This gives our framework the uncommon ability to exploit the appearance features that are available only sporadically. Once the graphs have been defined, multi-object tracking is formulated as the problem of finding a label assignment that is consistent with the constraints captured each graph, which results into a difference of convex (DC) program. We propose to decompose the global objective function into node-wise sub-problems. This not only allows a computationally efficient solution, but also supports an incremental and scalable construction of the graph, thereby making the framework applicable to large graphs and practical tracking scenarios. Moreover, it opens the possibility of parallel implementation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2533391</identifier><identifier>PMID: 26915115</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer vision ; Feature extraction ; graph labeling ; Graphical models ; Graphs ; Image edge detection ; label propagation ; Labeling ; Labels ; multi-object tracking ; Multiple target tracking ; Object tracking ; sporadic features ; Target tracking ; Trajectory</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-01, Vol.39 (1), p.61-74</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63</citedby><cites>FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7415947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26915115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar K C, Amit</creatorcontrib><creatorcontrib>Jacques, Laurent</creatorcontrib><creatorcontrib>De Vleeschouwer, Christophe</creatorcontrib><title>Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Given a set of detections, detected at each time instant independently, we investigate how to associate them across time. This is done by propagating labels on a set of graphs, each graph capturing how either the spatio-temporal or the appearance cues promote the assignment of identical or distinct labels to a pair of detections. The graph construction is motivated by a locally linear embedding of the detection features. Interestingly, the neighborhood of a node in appearance graph is defined to include all the nodes for which the appearance feature is available (even if they are temporally distant). This gives our framework the uncommon ability to exploit the appearance features that are available only sporadically. Once the graphs have been defined, multi-object tracking is formulated as the problem of finding a label assignment that is consistent with the constraints captured each graph, which results into a difference of convex (DC) program. We propose to decompose the global objective function into node-wise sub-problems. This not only allows a computationally efficient solution, but also supports an incremental and scalable construction of the graph, thereby making the framework applicable to large graphs and practical tracking scenarios. Moreover, it opens the possibility of parallel implementation.</description><subject>Computer vision</subject><subject>Feature extraction</subject><subject>graph labeling</subject><subject>Graphical models</subject><subject>Graphs</subject><subject>Image edge detection</subject><subject>label propagation</subject><subject>Labeling</subject><subject>Labels</subject><subject>multi-object tracking</subject><subject>Multiple target tracking</subject><subject>Object tracking</subject><subject>sporadic features</subject><subject>Target tracking</subject><subject>Trajectory</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1P3DAQhi0EKlvoH6ASstRLL1k8HtuJj2ihFGkRHJZzcByHeskXdlKp_76mu-WANNIc3mdGMw8hZ8CWAExfbB4u726XnIFacomIGg7IAjTqDCXqQ7JICc-KghfH5HOMW8ZASIafyDFXGiSAXJCnKx9t8J3vzeR_O2r6ml43jbfe9RNdm8q19CEMo3lO-dDTVKuhG1vXpdyEP_QmmPFXpM0Q6N3cTj67r7bOTnQTjH3x_fMpOWpMG92XfT8hjz-uN6uf2fr-5nZ1uc4sajll6ExRmdxyJVnFJYe8SEEtdWNRWeEAa1ZXSmOFldBQ89zmQmisJVoEp_CEfN_tHcPwOrs4lV36zLWt6d0wxxIKrpQUBecJ_fYB3Q5z6NN1iRJKco05JIrvKBuGGINryjF5Si-XwMo3_-U__-Wb_3LvPw2d71fPVefq95H_whPwdQd459x7nAuQWuT4F2NdiOc</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Kumar K C, Amit</creator><creator>Jacques, Laurent</creator><creator>De Vleeschouwer, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking</title><author>Kumar K C, Amit ; Jacques, Laurent ; De Vleeschouwer, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer vision</topic><topic>Feature extraction</topic><topic>graph labeling</topic><topic>Graphical models</topic><topic>Graphs</topic><topic>Image edge detection</topic><topic>label propagation</topic><topic>Labeling</topic><topic>Labels</topic><topic>multi-object tracking</topic><topic>Multiple target tracking</topic><topic>Object tracking</topic><topic>sporadic features</topic><topic>Target tracking</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar K C, Amit</creatorcontrib><creatorcontrib>Jacques, Laurent</creatorcontrib><creatorcontrib>De Vleeschouwer, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar K C, Amit</au><au>Jacques, Laurent</au><au>De Vleeschouwer, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>39</volume><issue>1</issue><spage>61</spage><epage>74</epage><pages>61-74</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Given a set of detections, detected at each time instant independently, we investigate how to associate them across time. This is done by propagating labels on a set of graphs, each graph capturing how either the spatio-temporal or the appearance cues promote the assignment of identical or distinct labels to a pair of detections. The graph construction is motivated by a locally linear embedding of the detection features. Interestingly, the neighborhood of a node in appearance graph is defined to include all the nodes for which the appearance feature is available (even if they are temporally distant). This gives our framework the uncommon ability to exploit the appearance features that are available only sporadically. Once the graphs have been defined, multi-object tracking is formulated as the problem of finding a label assignment that is consistent with the constraints captured each graph, which results into a difference of convex (DC) program. We propose to decompose the global objective function into node-wise sub-problems. This not only allows a computationally efficient solution, but also supports an incremental and scalable construction of the graph, thereby making the framework applicable to large graphs and practical tracking scenarios. Moreover, it opens the possibility of parallel implementation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26915115</pmid><doi>10.1109/TPAMI.2016.2533391</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2017-01, Vol.39 (1), p.61-74
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_26915115
source IEEE Electronic Library (IEL) Journals
subjects Computer vision
Feature extraction
graph labeling
Graphical models
Graphs
Image edge detection
label propagation
Labeling
Labels
multi-object tracking
Multiple target tracking
Object tracking
sporadic features
Target tracking
Trajectory
title Discriminative and Efficient Label Propagation on Complementary Graphs for Multi-Object Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminative%20and%20Efficient%20Label%20Propagation%20on%20Complementary%20Graphs%20for%20Multi-Object%20Tracking&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kumar%20K%20C,%20Amit&rft.date=2017-01-01&rft.volume=39&rft.issue=1&rft.spage=61&rft.epage=74&rft.pages=61-74&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2533391&rft_dat=%3Cproquest_pubme%3E1846529371%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-3ea8ba7c2650b252178c39d59fc36c4e13d0db693b3b491d27c74493d53c31e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846529371&rft_id=info:pmid/26915115&rft_ieee_id=7415947&rfr_iscdi=true