Loading…
Leveraging the Wisdom of the Crowd for Fine-Grained Recognition
Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This ne...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2016-04, Vol.38 (4), p.666-676 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103 |
container_end_page | 676 |
container_issue | 4 |
container_start_page | 666 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 38 |
creator | Jia Deng Krause, Jonathan Stark, Michael Li Fei-Fei |
description | Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks. |
doi_str_mv | 10.1109/TPAMI.2015.2439285 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26959672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7115172</ieee_id><sourcerecordid>4048074391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNssslJSvGjUFFE8bis2Uld6W402VX890Zbe_D0MrzPDMNDyCHQMQDVZw93k5vZmFEQY5ZxzZTYIkPQXKdccL1NhhQkS5ViakD2QnilFDJB-S4ZMKmFljkbkvM5fqAvF3W7SLoXTJ7qULkmcfZ3mnr3WSXW-eSybjG98mWMKrlH4xZt3dWu3Sc7tlwGPFjniDxeXjxMr9P57dVsOpmnhgvoUq00ZDJXhldVRo185iZT0hqKgFKilYpVAjkFU5aiApvZPFdKsMwoYREoH5HT1d037957DF3R1MHgclm26PpQQJ4zxRUTIqIn_9BX1_s2fhcpFTHgOo8UW1HGuxA82uLN103pvwqgxY_e4ldv8aO3WOuNS8fr0_1zg9Vm5c9nBI5WQI2ImzoHEBDbb7RFfGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787281397</pqid></control><display><type>article</type><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><source>IEEE Xplore (Online service)</source><creator>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</creator><creatorcontrib>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</creatorcontrib><description>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2015.2439285</identifier><identifier>PMID: 26959672</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Birds ; Crowdsourcing ; Detectors ; Games ; Gamification ; Human Computation ; Object Recognition ; Pattern recognition ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.666-676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</citedby><cites>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7115172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26959672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia Deng</creatorcontrib><creatorcontrib>Krause, Jonathan</creatorcontrib><creatorcontrib>Stark, Michael</creatorcontrib><creatorcontrib>Li Fei-Fei</creatorcontrib><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</description><subject>Birds</subject><subject>Crowdsourcing</subject><subject>Detectors</subject><subject>Games</subject><subject>Gamification</subject><subject>Human Computation</subject><subject>Object Recognition</subject><subject>Pattern recognition</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNssslJSvGjUFFE8bis2Uld6W402VX890Zbe_D0MrzPDMNDyCHQMQDVZw93k5vZmFEQY5ZxzZTYIkPQXKdccL1NhhQkS5ViakD2QnilFDJB-S4ZMKmFljkbkvM5fqAvF3W7SLoXTJ7qULkmcfZ3mnr3WSXW-eSybjG98mWMKrlH4xZt3dWu3Sc7tlwGPFjniDxeXjxMr9P57dVsOpmnhgvoUq00ZDJXhldVRo185iZT0hqKgFKilYpVAjkFU5aiApvZPFdKsMwoYREoH5HT1d037957DF3R1MHgclm26PpQQJ4zxRUTIqIn_9BX1_s2fhcpFTHgOo8UW1HGuxA82uLN103pvwqgxY_e4ldv8aO3WOuNS8fr0_1zg9Vm5c9nBI5WQI2ImzoHEBDbb7RFfGM</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Jia Deng</creator><creator>Krause, Jonathan</creator><creator>Stark, Michael</creator><creator>Li Fei-Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><author>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Birds</topic><topic>Crowdsourcing</topic><topic>Detectors</topic><topic>Games</topic><topic>Gamification</topic><topic>Human Computation</topic><topic>Object Recognition</topic><topic>Pattern recognition</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia Deng</creatorcontrib><creatorcontrib>Krause, Jonathan</creatorcontrib><creatorcontrib>Stark, Michael</creatorcontrib><creatorcontrib>Li Fei-Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia Deng</au><au>Krause, Jonathan</au><au>Stark, Michael</au><au>Li Fei-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>38</volume><issue>4</issue><spage>666</spage><epage>676</epage><pages>666-676</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26959672</pmid><doi>10.1109/TPAMI.2015.2439285</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.666-676 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_pubmed_primary_26959672 |
source | IEEE Xplore (Online service) |
subjects | Birds Crowdsourcing Detectors Games Gamification Human Computation Object Recognition Pattern recognition Three-dimensional displays Visualization |
title | Leveraging the Wisdom of the Crowd for Fine-Grained Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20the%20Wisdom%20of%20the%20Crowd%20for%20Fine-Grained%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Jia%20Deng&rft.date=2016-04-01&rft.volume=38&rft.issue=4&rft.spage=666&rft.epage=676&rft.pages=666-676&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2015.2439285&rft_dat=%3Cproquest_pubme%3E4048074391%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787281397&rft_id=info:pmid/26959672&rft_ieee_id=7115172&rfr_iscdi=true |