Loading…

Leveraging the Wisdom of the Crowd for Fine-Grained Recognition

Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This ne...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2016-04, Vol.38 (4), p.666-676
Main Authors: Jia Deng, Krause, Jonathan, Stark, Michael, Li Fei-Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103
cites cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103
container_end_page 676
container_issue 4
container_start_page 666
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 38
creator Jia Deng
Krause, Jonathan
Stark, Michael
Li Fei-Fei
description Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.
doi_str_mv 10.1109/TPAMI.2015.2439285
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_26959672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7115172</ieee_id><sourcerecordid>4048074391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNssslJSvGjUFFE8bis2Uld6W402VX890Zbe_D0MrzPDMNDyCHQMQDVZw93k5vZmFEQY5ZxzZTYIkPQXKdccL1NhhQkS5ViakD2QnilFDJB-S4ZMKmFljkbkvM5fqAvF3W7SLoXTJ7qULkmcfZ3mnr3WSXW-eSybjG98mWMKrlH4xZt3dWu3Sc7tlwGPFjniDxeXjxMr9P57dVsOpmnhgvoUq00ZDJXhldVRo185iZT0hqKgFKilYpVAjkFU5aiApvZPFdKsMwoYREoH5HT1d037957DF3R1MHgclm26PpQQJ4zxRUTIqIn_9BX1_s2fhcpFTHgOo8UW1HGuxA82uLN103pvwqgxY_e4ldv8aO3WOuNS8fr0_1zg9Vm5c9nBI5WQI2ImzoHEBDbb7RFfGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787281397</pqid></control><display><type>article</type><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><source>IEEE Xplore (Online service)</source><creator>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</creator><creatorcontrib>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</creatorcontrib><description>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2015.2439285</identifier><identifier>PMID: 26959672</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Birds ; Crowdsourcing ; Detectors ; Games ; Gamification ; Human Computation ; Object Recognition ; Pattern recognition ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.666-676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</citedby><cites>FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7115172$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26959672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia Deng</creatorcontrib><creatorcontrib>Krause, Jonathan</creatorcontrib><creatorcontrib>Stark, Michael</creatorcontrib><creatorcontrib>Li Fei-Fei</creatorcontrib><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</description><subject>Birds</subject><subject>Crowdsourcing</subject><subject>Detectors</subject><subject>Games</subject><subject>Gamification</subject><subject>Human Computation</subject><subject>Object Recognition</subject><subject>Pattern recognition</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlb_gIIsePGyNZNssslJSvGjUFFE8bis2Uld6W402VX890Zbe_D0MrzPDMNDyCHQMQDVZw93k5vZmFEQY5ZxzZTYIkPQXKdccL1NhhQkS5ViakD2QnilFDJB-S4ZMKmFljkbkvM5fqAvF3W7SLoXTJ7qULkmcfZ3mnr3WSXW-eSybjG98mWMKrlH4xZt3dWu3Sc7tlwGPFjniDxeXjxMr9P57dVsOpmnhgvoUq00ZDJXhldVRo185iZT0hqKgFKilYpVAjkFU5aiApvZPFdKsMwoYREoH5HT1d037957DF3R1MHgclm26PpQQJ4zxRUTIqIn_9BX1_s2fhcpFTHgOo8UW1HGuxA82uLN103pvwqgxY_e4ldv8aO3WOuNS8fr0_1zg9Vm5c9nBI5WQI2ImzoHEBDbb7RFfGM</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Jia Deng</creator><creator>Krause, Jonathan</creator><creator>Stark, Michael</creator><creator>Li Fei-Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</title><author>Jia Deng ; Krause, Jonathan ; Stark, Michael ; Li Fei-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Birds</topic><topic>Crowdsourcing</topic><topic>Detectors</topic><topic>Games</topic><topic>Gamification</topic><topic>Human Computation</topic><topic>Object Recognition</topic><topic>Pattern recognition</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia Deng</creatorcontrib><creatorcontrib>Krause, Jonathan</creatorcontrib><creatorcontrib>Stark, Michael</creatorcontrib><creatorcontrib>Li Fei-Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia Deng</au><au>Krause, Jonathan</au><au>Stark, Michael</au><au>Li Fei-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging the Wisdom of the Crowd for Fine-Grained Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>38</volume><issue>4</issue><spage>666</spage><epage>676</epage><pages>666-676</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26959672</pmid><doi>10.1109/TPAMI.2015.2439285</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.666-676
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_26959672
source IEEE Xplore (Online service)
subjects Birds
Crowdsourcing
Detectors
Games
Gamification
Human Computation
Object Recognition
Pattern recognition
Three-dimensional displays
Visualization
title Leveraging the Wisdom of the Crowd for Fine-Grained Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20the%20Wisdom%20of%20the%20Crowd%20for%20Fine-Grained%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Jia%20Deng&rft.date=2016-04-01&rft.volume=38&rft.issue=4&rft.spage=666&rft.epage=676&rft.pages=666-676&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2015.2439285&rft_dat=%3Cproquest_pubme%3E4048074391%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-98914678c3dd40c6b3c486fc0e1e66ef682d5e301caa5d1f4f7788524c85fe103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787281397&rft_id=info:pmid/26959672&rft_ieee_id=7115172&rfr_iscdi=true