Loading…
Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P 700 photooxidation, expression of PsbS and Lhcb1 proteins
In this work, we have compared photosynthetic performance and expression of the PsbS and Lhcb1 proteins in two contrast ecotypes of Tradescantia species, T. fluminensis (shade-tolerant) and T. sillamontana (light-resistant), grown at two intensities of light: 50-125 μmol photons m s (low light, LL)...
Saved in:
Published in: | Photosynthesis research 2016-12, Vol.130 (1-3), p.275 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we have compared photosynthetic performance and expression of the PsbS and Lhcb1 proteins in two contrast ecotypes of Tradescantia species, T. fluminensis (shade-tolerant) and T. sillamontana (light-resistant), grown at two intensities of light: 50-125 μmol photons m
s
(low light, LL) and 875-1000 μmol photons m
s
(high light, HL). Using the EPR method for measuring the P
content, we have found that LL-grown plants of both species have higher (by a factor of ≈1.7-1.8) contents of PSI per fresh weight unit as compared to HL-grown plants. Acclimation of plants to LL or HL irradiation also influences the Chl(a + b) level and expression of the PsbS and Lhcb1 proteins. Immunoblotting analysis showed that acclimation to HL stimulates (by a factor of ≈1.7-1.8) the level of PsbS related to the total number of P
centers. In light-resistant species T. sillamontana, the ratio PsbS/P
is about 2-times higher than in shade-tolerant species T. fluminensis grown under the same conditions. This should enhance the capacity of their leaves for protection against the light stress. In agreement with these observations, the capacity of leaves for NPQ induction was enhanced during plant acclimation to HL. Kinetic studies of P
photooxidation and light-induced changes in the yield of Chl a fluorescence also revealed that the short-term regulation of electron transport processes in chloroplasts, which manifested themselves in the kinetics of [Formula: see text] induction and the rate of Chl a fluorescence quenching, occurred more rapidly in HL-grown plants than in LL-grown plants. Thus, both factors, enhanced expression of PsbS and more rapid response of the photosynthetic electron transport chain to dark-to-light transitions should increase the capacity of HL-grown plants for their resistance to rapid fluctuations of solar light. |
---|---|
ISSN: | 1573-5079 |
DOI: | 10.1007/s11120-016-0252-z |