Loading…
Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression
A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are...
Saved in:
Published in: | IEEE transactions on image processing 2016-06, Vol.25 (6), p.2673-2683 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363 |
container_end_page | 2683 |
container_issue | 6 |
container_start_page | 2673 |
container_title | IEEE transactions on image processing |
container_volume | 25 |
creator | Tai, Ying Yang, Jian Zhang, Yigong Luo, Lei Qian, Jianjun Chen, Yu |
description | A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method. |
doi_str_mv | 10.1109/TIP.2016.2551362 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27071166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448432</ieee_id><sourcerecordid>1814668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</originalsourceid><addsrcrecordid>eNpdkMFLwzAchYMoTqd3QZCAFy-d-SVp0x5lOB1MNmTqwUNJ03TL6JqZtIL_vRmbO3hKSL734H0IXQEZAJDsfj6eDSiBZEDjGFhCj9AZZBwiQjg9DncSi0gAz3ro3PsVIcBjSE5RjwoiAJLkDH2OpNL4VSu7aExrbIM_TLvEM-s1fpfOyO2bx7Ip8YvxsjaLZq2bFn8biaeuXdqFbWSNZ84q1_lW-9C1cNr7ELtAJ5Wsvb7cn330NnqcD5-jyfRpPHyYRIpx0UYp51IpKIQAqlJWxKIsgJcVzxhRmQKegqigkJVgNOzkFVEAJWFUqlKH1ayP7na9G2e_Ou3bfG280nUtG207n0MKPElCCw3o7T90ZTsXFgRKpAKyFOI0UGRHKWe9d7rKN86spfvJgeRb8XkQn2_F53vxIXKzL-6KtS4PgT_TAbjeAUZrffgWnKecUfYLch2GTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787198158</pqid></control><display><type>article</type><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</creator><creatorcontrib>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</creatorcontrib><description>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2551362</identifier><identifier>PMID: 27071166</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Collaboration ; Databases, Factual ; Face ; face alignment ; Face recognition ; Humans ; Linear Models ; Manifolds ; orthogonal Procrustes problem (OPP) ; Pattern Recognition, Automated ; pose variations ; Regression analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2016-06, Vol.25 (6), p.2673-2683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</citedby><cites>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tai, Ying</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Yigong</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Qian, Jianjun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Databases, Factual</subject><subject>Face</subject><subject>face alignment</subject><subject>Face recognition</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Manifolds</subject><subject>orthogonal Procrustes problem (OPP)</subject><subject>Pattern Recognition, Automated</subject><subject>pose variations</subject><subject>Regression analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAchYMoTqd3QZCAFy-d-SVp0x5lOB1MNmTqwUNJ03TL6JqZtIL_vRmbO3hKSL734H0IXQEZAJDsfj6eDSiBZEDjGFhCj9AZZBwiQjg9DncSi0gAz3ro3PsVIcBjSE5RjwoiAJLkDH2OpNL4VSu7aExrbIM_TLvEM-s1fpfOyO2bx7Ip8YvxsjaLZq2bFn8biaeuXdqFbWSNZ84q1_lW-9C1cNr7ELtAJ5Wsvb7cn330NnqcD5-jyfRpPHyYRIpx0UYp51IpKIQAqlJWxKIsgJcVzxhRmQKegqigkJVgNOzkFVEAJWFUqlKH1ayP7na9G2e_Ou3bfG280nUtG207n0MKPElCCw3o7T90ZTsXFgRKpAKyFOI0UGRHKWe9d7rKN86spfvJgeRb8XkQn2_F53vxIXKzL-6KtS4PgT_TAbjeAUZrffgWnKecUfYLch2GTQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Tai, Ying</creator><creator>Yang, Jian</creator><creator>Zhang, Yigong</creator><creator>Luo, Lei</creator><creator>Qian, Jianjun</creator><creator>Chen, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><author>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Databases, Factual</topic><topic>Face</topic><topic>face alignment</topic><topic>Face recognition</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Manifolds</topic><topic>orthogonal Procrustes problem (OPP)</topic><topic>Pattern Recognition, Automated</topic><topic>pose variations</topic><topic>Regression analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Ying</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Yigong</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Qian, Jianjun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Ying</au><au>Yang, Jian</au><au>Zhang, Yigong</au><au>Luo, Lei</au><au>Qian, Jianjun</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>25</volume><issue>6</issue><spage>2673</spage><epage>2683</epage><pages>2673-2683</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27071166</pmid><doi>10.1109/TIP.2016.2551362</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2016-06, Vol.25 (6), p.2673-2683 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_27071166 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Collaboration Databases, Factual Face face alignment Face recognition Humans Linear Models Manifolds orthogonal Procrustes problem (OPP) Pattern Recognition, Automated pose variations Regression analysis Training |
title | Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Recognition%20With%20Pose%20Variations%20and%20Misalignment%20via%20Orthogonal%20Procrustes%20Regression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tai,%20Ying&rft.date=2016-06-01&rft.volume=25&rft.issue=6&rft.spage=2673&rft.epage=2683&rft.pages=2673-2683&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2551362&rft_dat=%3Cproquest_pubme%3E1814668172%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787198158&rft_id=info:pmid/27071166&rft_ieee_id=7448432&rfr_iscdi=true |