Loading…

Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression

A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2016-06, Vol.25 (6), p.2673-2683
Main Authors: Tai, Ying, Yang, Jian, Zhang, Yigong, Luo, Lei, Qian, Jianjun, Chen, Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363
cites cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363
container_end_page 2683
container_issue 6
container_start_page 2673
container_title IEEE transactions on image processing
container_volume 25
creator Tai, Ying
Yang, Jian
Zhang, Yigong
Luo, Lei
Qian, Jianjun
Chen, Yu
description A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.
doi_str_mv 10.1109/TIP.2016.2551362
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27071166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448432</ieee_id><sourcerecordid>1814668172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</originalsourceid><addsrcrecordid>eNpdkMFLwzAchYMoTqd3QZCAFy-d-SVp0x5lOB1MNmTqwUNJ03TL6JqZtIL_vRmbO3hKSL734H0IXQEZAJDsfj6eDSiBZEDjGFhCj9AZZBwiQjg9DncSi0gAz3ro3PsVIcBjSE5RjwoiAJLkDH2OpNL4VSu7aExrbIM_TLvEM-s1fpfOyO2bx7Ip8YvxsjaLZq2bFn8biaeuXdqFbWSNZ84q1_lW-9C1cNr7ELtAJ5Wsvb7cn330NnqcD5-jyfRpPHyYRIpx0UYp51IpKIQAqlJWxKIsgJcVzxhRmQKegqigkJVgNOzkFVEAJWFUqlKH1ayP7na9G2e_Ou3bfG280nUtG207n0MKPElCCw3o7T90ZTsXFgRKpAKyFOI0UGRHKWe9d7rKN86spfvJgeRb8XkQn2_F53vxIXKzL-6KtS4PgT_TAbjeAUZrffgWnKecUfYLch2GTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787198158</pqid></control><display><type>article</type><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</creator><creatorcontrib>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</creatorcontrib><description>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2551362</identifier><identifier>PMID: 27071166</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Collaboration ; Databases, Factual ; Face ; face alignment ; Face recognition ; Humans ; Linear Models ; Manifolds ; orthogonal Procrustes problem (OPP) ; Pattern Recognition, Automated ; pose variations ; Regression analysis ; Training</subject><ispartof>IEEE transactions on image processing, 2016-06, Vol.25 (6), p.2673-2683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</citedby><cites>FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27071166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tai, Ying</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Yigong</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Qian, Jianjun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Databases, Factual</subject><subject>Face</subject><subject>face alignment</subject><subject>Face recognition</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Manifolds</subject><subject>orthogonal Procrustes problem (OPP)</subject><subject>Pattern Recognition, Automated</subject><subject>pose variations</subject><subject>Regression analysis</subject><subject>Training</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkMFLwzAchYMoTqd3QZCAFy-d-SVp0x5lOB1MNmTqwUNJ03TL6JqZtIL_vRmbO3hKSL734H0IXQEZAJDsfj6eDSiBZEDjGFhCj9AZZBwiQjg9DncSi0gAz3ro3PsVIcBjSE5RjwoiAJLkDH2OpNL4VSu7aExrbIM_TLvEM-s1fpfOyO2bx7Ip8YvxsjaLZq2bFn8biaeuXdqFbWSNZ84q1_lW-9C1cNr7ELtAJ5Wsvb7cn330NnqcD5-jyfRpPHyYRIpx0UYp51IpKIQAqlJWxKIsgJcVzxhRmQKegqigkJVgNOzkFVEAJWFUqlKH1ayP7na9G2e_Ou3bfG280nUtG207n0MKPElCCw3o7T90ZTsXFgRKpAKyFOI0UGRHKWe9d7rKN86spfvJgeRb8XkQn2_F53vxIXKzL-6KtS4PgT_TAbjeAUZrffgWnKecUfYLch2GTQ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Tai, Ying</creator><creator>Yang, Jian</creator><creator>Zhang, Yigong</creator><creator>Luo, Lei</creator><creator>Qian, Jianjun</creator><creator>Chen, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</title><author>Tai, Ying ; Yang, Jian ; Zhang, Yigong ; Luo, Lei ; Qian, Jianjun ; Chen, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Databases, Factual</topic><topic>Face</topic><topic>face alignment</topic><topic>Face recognition</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Manifolds</topic><topic>orthogonal Procrustes problem (OPP)</topic><topic>Pattern Recognition, Automated</topic><topic>pose variations</topic><topic>Regression analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tai, Ying</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Yigong</creatorcontrib><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Qian, Jianjun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tai, Ying</au><au>Yang, Jian</au><au>Zhang, Yigong</au><au>Luo, Lei</au><au>Qian, Jianjun</au><au>Chen, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>25</volume><issue>6</issue><spage>2673</spage><epage>2683</epage><pages>2673-2683</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A linear regression-based method is a hot topic in face recognition community. Recently, sparse representation and collaborative representation-based classifiers for face recognition have been proposed and attracted great attention. However, most of the existing regression analysis-based methods are sensitive to pose variations. In this paper, we introduce the orthogonal Procrustes problem (OPP) as a model to handle pose variations existed in 2D face images. OPP seeks an optimal linear transformation between two images with different poses so as to make the transformed image best fits the other one. We integrate OPP into the regression model and propose the orthogonal Procrustes regression (OPR) model. To address the problem that the linear transformation is not suitable for handling highly non-linear pose variation, we further adopt a progressive strategy and propose the stacked OPR. As a practical framework, OPR can handle face alignment, pose correction, and face representation simultaneously. We optimize the proposed model via an efficient alternating iterative algorithm, and experimental results on three popular face databases, such as CMU PIE database, CMU Multi-PIE database, and LFW database, demonstrate the effectiveness of our proposed method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27071166</pmid><doi>10.1109/TIP.2016.2551362</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-06, Vol.25 (6), p.2673-2683
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_27071166
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Collaboration
Databases, Factual
Face
face alignment
Face recognition
Humans
Linear Models
Manifolds
orthogonal Procrustes problem (OPP)
Pattern Recognition, Automated
pose variations
Regression analysis
Training
title Face Recognition With Pose Variations and Misalignment via Orthogonal Procrustes Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20Recognition%20With%20Pose%20Variations%20and%20Misalignment%20via%20Orthogonal%20Procrustes%20Regression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tai,%20Ying&rft.date=2016-06-01&rft.volume=25&rft.issue=6&rft.spage=2673&rft.epage=2683&rft.pages=2673-2683&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2551362&rft_dat=%3Cproquest_pubme%3E1814668172%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-844acc1b7712c83b57db14df4930c9c14817f1baf7322554f0c11d032acde1363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1787198158&rft_id=info:pmid/27071166&rft_ieee_id=7448432&rfr_iscdi=true