Loading…

Tribotronic control of friction in oil-based lubricants with ionic liquid additives

Atomic force microscopy (AFM) reveals that tribotronic control of friction using an external potential applied to a gold surface is possible for ionic liquid (IL) concentrations as low as 5 mol% in hexadecane. The IL used is trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate, in w...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2016, Vol.18 (34), p.23657-23662
Main Authors: Cooper, P. K, Li, H, Rutland, M. W, Webber, G. B, Atkin, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomic force microscopy (AFM) reveals that tribotronic control of friction using an external potential applied to a gold surface is possible for ionic liquid (IL) concentrations as low as 5 mol% in hexadecane. The IL used is trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate, in which both the cation and anion have surfactant-like structures, and is miscible with hexadecane in all proportions. For IL concentrations less than 5 mol% friction does not vary with applied potential, but for 5 mol% and above changing the potential changes the composition of the IL boundary layer from cation-enriched (negative potentials) to anion-enriched (positive potentials). As the lubricities of the cation-rich and anion-rich boundary layers differ, this enables active control of friction in oil-based lubricants. Atomic force microscopy (AFM) reveals that tribotronic control of friction using an external potential applied to a gold surface is possible for ionic liquid (IL) concentrations as low as 5 mol% in hexadecane.
ISSN:1463-9076
1463-9084
1463-9084
DOI:10.1039/c6cp04405k