Loading…

Comment on 'Proton beam monitor chamber calibration'

We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ioni...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2016-09, Vol.61 (17), p.6585-6593
Main Authors: Palmans, Hugo, Vatnitsky, Stanislav M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793
cites cdi_FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793
container_end_page 6593
container_issue 17
container_start_page 6585
container_title Physics in medicine & biology
container_volume 61
creator Palmans, Hugo
Vatnitsky, Stanislav M
description We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that kQ-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.
doi_str_mv 10.1088/0031-9155/61/17/6585
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27535790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812888995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6D0R6cr3UZprmo0dZ_IIFPeg5JN0UuzRNTdqD_96UXRcPgqcXhuedYR6ELgHfAhYiw5hAWgKlGYMMeMaooEdoDoRByijDx2h-QGboLIQtxgAiL07RLOeUUF7iOSpWzlrTDYnrkuWrd0NMbZRNrOuawfmk-lBWm5iqbbRXQ-O65Tk6qVUbzMU-F-j94f5t9ZSuXx6fV3frtCK8HFLgKsc4J0BUzTeUK0PiXcFrJWgN2hDQ2BRa1FQbpgSPU8yoJsYYWnJekgW62e3tvfscTRikbUJl2lZ1xo1BgoBcCFGWNKLFDq28C8GbWva-scp_ScBy8iUnGXKSIRlI4HLyFWtX-wujtmZzKP0IigDeAY3r5daNvosP_7fz-o9Kb_UvSPabmnwDhFt_fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812888995</pqid></control><display><type>article</type><title>Comment on 'Proton beam monitor chamber calibration'</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Palmans, Hugo ; Vatnitsky, Stanislav M</creator><creatorcontrib>Palmans, Hugo ; Vatnitsky, Stanislav M</creatorcontrib><description>We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that kQ-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/61/17/6585</identifier><identifier>PMID: 27535790</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Calibration ; Calorimetry ; Faraday cup ; gradient correction ; ionization chamber ; Protons ; Radiometry ; reference dosimetry ; scanned proton beam ; value ; Water - chemistry</subject><ispartof>Physics in medicine &amp; biology, 2016-09, Vol.61 (17), p.6585-6593</ispartof><rights>2016 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793</citedby><cites>FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27535790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Palmans, Hugo</creatorcontrib><creatorcontrib>Vatnitsky, Stanislav M</creatorcontrib><title>Comment on 'Proton beam monitor chamber calibration'</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that kQ-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.</description><subject>Calibration</subject><subject>Calorimetry</subject><subject>Faraday cup</subject><subject>gradient correction</subject><subject>ionization chamber</subject><subject>Protons</subject><subject>Radiometry</subject><subject>reference dosimetry</subject><subject>scanned proton beam</subject><subject>value</subject><subject>Water - chemistry</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6D0R6cr3UZprmo0dZ_IIFPeg5JN0UuzRNTdqD_96UXRcPgqcXhuedYR6ELgHfAhYiw5hAWgKlGYMMeMaooEdoDoRByijDx2h-QGboLIQtxgAiL07RLOeUUF7iOSpWzlrTDYnrkuWrd0NMbZRNrOuawfmk-lBWm5iqbbRXQ-O65Tk6qVUbzMU-F-j94f5t9ZSuXx6fV3frtCK8HFLgKsc4J0BUzTeUK0PiXcFrJWgN2hDQ2BRa1FQbpgSPU8yoJsYYWnJekgW62e3tvfscTRikbUJl2lZ1xo1BgoBcCFGWNKLFDq28C8GbWva-scp_ScBy8iUnGXKSIRlI4HLyFWtX-wujtmZzKP0IigDeAY3r5daNvosP_7fz-o9Kb_UvSPabmnwDhFt_fA</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Palmans, Hugo</creator><creator>Vatnitsky, Stanislav M</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160907</creationdate><title>Comment on 'Proton beam monitor chamber calibration'</title><author>Palmans, Hugo ; Vatnitsky, Stanislav M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Calibration</topic><topic>Calorimetry</topic><topic>Faraday cup</topic><topic>gradient correction</topic><topic>ionization chamber</topic><topic>Protons</topic><topic>Radiometry</topic><topic>reference dosimetry</topic><topic>scanned proton beam</topic><topic>value</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palmans, Hugo</creatorcontrib><creatorcontrib>Vatnitsky, Stanislav M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palmans, Hugo</au><au>Vatnitsky, Stanislav M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on 'Proton beam monitor chamber calibration'</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>61</volume><issue>17</issue><spage>6585</spage><epage>6593</epage><pages>6585-6593</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that kQ-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27535790</pmid><doi>10.1088/0031-9155/61/17/6585</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2016-09, Vol.61 (17), p.6585-6593
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_27535790
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Calibration
Calorimetry
Faraday cup
gradient correction
ionization chamber
Protons
Radiometry
reference dosimetry
scanned proton beam
value
Water - chemistry
title Comment on 'Proton beam monitor chamber calibration'
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20'Proton%20beam%20monitor%20chamber%20calibration'&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Palmans,%20Hugo&rft.date=2016-09-07&rft.volume=61&rft.issue=17&rft.spage=6585&rft.epage=6593&rft.pages=6585-6593&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/61/17/6585&rft_dat=%3Cproquest_pubme%3E1812888995%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-17a2002313af7d57ae375387fa85f1be31b0e4b8f5be6a8785f065b3eee597793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812888995&rft_id=info:pmid/27535790&rfr_iscdi=true