Loading…
Combined treatment with X-ray irradiation and 5-aminolevulinic acid elicits better transcriptomic response of cell cycle-related factors than X-ray irradiation alone
Purpose: 5-Aminolevulinic acid (ALA) is a precursor of the photosensitizer protoporphyrin (PpIX) used in photodynamic therapy. In our previous work, PpIX enhanced the generation of reactive oxygen species by X-ray irradiation. In this study, we evaluated the potential of ALA as an endogenous sensiti...
Saved in:
Published in: | International journal of radiation biology 2016-12, Vol.92 (12), p.774-789 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose: 5-Aminolevulinic acid (ALA) is a precursor of the photosensitizer protoporphyrin (PpIX) used in photodynamic therapy. In our previous work, PpIX enhanced the generation of reactive oxygen species by X-ray irradiation. In this study, we evaluated the potential of ALA as an endogenous sensitizer to X-ray irradiation.
Methodology: Tumor-bearing C57BL/6J mice implanted with B16-BL6 melanoma cells were subsequently treated with irradiation (3 Gy/day for 10 days; total, 30 Gy) plus local administration of 50 mg/kg ALA 24 hours prior to each irradiation (ALA-XT). Tumor-bearing mice without treatment (NT), those treated with ALA only (ALAT), and those treated with X-ray irradiation only (XT) were used as controls.
Results: ALA potentiated tumor suppression by X-ray irradiation. In microarray analyses using tumor tissue collected after 10 sessions of fractional irradiation, functional analysis revealed that the majority of dysregulated genes in the XT and ALA-XT groups were related to cell-cycle arrest. Finally, the XT and ALA-XT groups differed in the strength of expression, but not in the pattern of expression.
Conclusions: mRNA analysis revealed that the combined use of ALA and X-ray irradiation sensitized tumors to X-ray treatment. Furthermore, the present results were consistent with ALA's tumor suppressive effects in vivo. |
---|---|
ISSN: | 0955-3002 1362-3095 |
DOI: | 10.1080/09553002.2016.1230240 |