Loading…
Breaking through the false coincidence barrier in electron–ion coincidence experiments
Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for th...
Saved in:
Published in: | The Journal of chemical physics 2016-10, Vol.145 (16), p.164202-164202 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3 |
container_end_page | 164202 |
container_issue | 16 |
container_start_page | 164202 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Osborn, David L. Hayden, Carl C. Hemberger, Patrick Bodi, Andras Voronova, Krisztina Sztáray, Bálint |
description | Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9
+, whereas Ar4
+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems. |
doi_str_mv | 10.1063/1.4965428 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27802642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121576693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3</originalsourceid><addsrcrecordid>eNp90c2KFDEQB_AgijuuHnwBafSiQq-pfFQnx3XxCxa8KHgL3enqnawzyZh0i958B9_QJzHrjIqCnury409V_Rm7C_wEOMoncKIsaiXMNbYCbmzboeXX2YpzAa1FjkfsVimXnHPohLrJjkRnuEAlVuzd00z9-xAvmnmd03KxrpOaqd8UanwK0YeRoqdm6HMOlJsQG9qQn3OK3758DSn-oejTjnLYUpzLbXbjR8qdwzxmb58_e3P2sj1__eLV2el56zXouTXIR4FSD9yMXitl_YTYDShIKtQ4aNkNChXX2hIKAdIbxRHAKjlOxgzymN3f56YyB1d8mMmvfYqxLulASg1SVfRwj3Y5fViozG4biqfNpo-UluLASK2lAcsrffAXvUxLjvUEJ0CA7hCtrOrRXvmcSsk0uV29u8-fHXB31YkDd-ik2nuHxGXY0vhL_iyhgsd7cLV9P9en_jftn_hjyr-h242T_A7xWKDd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121576693</pqid></control><display><type>article</type><title>Breaking through the false coincidence barrier in electron–ion coincidence experiments</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Osborn, David L. ; Hayden, Carl C. ; Hemberger, Patrick ; Bodi, Andras ; Voronova, Krisztina ; Sztáray, Bálint</creator><creatorcontrib>Osborn, David L. ; Hayden, Carl C. ; Hemberger, Patrick ; Bodi, Andras ; Voronova, Krisztina ; Sztáray, Bálint ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9
+, whereas Ar4
+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4965428</identifier><identifier>PMID: 27802642</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical reactions ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Deflection ; Dynamic range ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ion detectors ; Ion impact ; Ion pairs ; Ionization ; Organic chemistry ; Position sensing ; Quantitative analysis ; Sensitivity analysis ; Spectral sensitivity ; Spectrum analysis ; Time dependence ; Time of flight photoelectron coincidence spectroscopy</subject><ispartof>The Journal of chemical physics, 2016-10, Vol.145 (16), p.164202-164202</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3</citedby><cites>FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3</cites><orcidid>0000-0002-1251-4549 ; 0000000212514549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4965428$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27922,27923,76153</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27802642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1335134$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osborn, David L.</creatorcontrib><creatorcontrib>Hayden, Carl C.</creatorcontrib><creatorcontrib>Hemberger, Patrick</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Breaking through the false coincidence barrier in electron–ion coincidence experiments</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9
+, whereas Ar4
+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.</description><subject>Chemical reactions</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Deflection</subject><subject>Dynamic range</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ion detectors</subject><subject>Ion impact</subject><subject>Ion pairs</subject><subject>Ionization</subject><subject>Organic chemistry</subject><subject>Position sensing</subject><subject>Quantitative analysis</subject><subject>Sensitivity analysis</subject><subject>Spectral sensitivity</subject><subject>Spectrum analysis</subject><subject>Time dependence</subject><subject>Time of flight photoelectron coincidence spectroscopy</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90c2KFDEQB_AgijuuHnwBafSiQq-pfFQnx3XxCxa8KHgL3enqnawzyZh0i958B9_QJzHrjIqCnury409V_Rm7C_wEOMoncKIsaiXMNbYCbmzboeXX2YpzAa1FjkfsVimXnHPohLrJjkRnuEAlVuzd00z9-xAvmnmd03KxrpOaqd8UanwK0YeRoqdm6HMOlJsQG9qQn3OK3758DSn-oejTjnLYUpzLbXbjR8qdwzxmb58_e3P2sj1__eLV2el56zXouTXIR4FSD9yMXitl_YTYDShIKtQ4aNkNChXX2hIKAdIbxRHAKjlOxgzymN3f56YyB1d8mMmvfYqxLulASg1SVfRwj3Y5fViozG4biqfNpo-UluLASK2lAcsrffAXvUxLjvUEJ0CA7hCtrOrRXvmcSsk0uV29u8-fHXB31YkDd-ik2nuHxGXY0vhL_iyhgsd7cLV9P9en_jftn_hjyr-h242T_A7xWKDd</recordid><startdate>20161028</startdate><enddate>20161028</enddate><creator>Osborn, David L.</creator><creator>Hayden, Carl C.</creator><creator>Hemberger, Patrick</creator><creator>Bodi, Andras</creator><creator>Voronova, Krisztina</creator><creator>Sztáray, Bálint</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1251-4549</orcidid><orcidid>https://orcid.org/0000000212514549</orcidid></search><sort><creationdate>20161028</creationdate><title>Breaking through the false coincidence barrier in electron–ion coincidence experiments</title><author>Osborn, David L. ; Hayden, Carl C. ; Hemberger, Patrick ; Bodi, Andras ; Voronova, Krisztina ; Sztáray, Bálint</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical reactions</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Deflection</topic><topic>Dynamic range</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ion detectors</topic><topic>Ion impact</topic><topic>Ion pairs</topic><topic>Ionization</topic><topic>Organic chemistry</topic><topic>Position sensing</topic><topic>Quantitative analysis</topic><topic>Sensitivity analysis</topic><topic>Spectral sensitivity</topic><topic>Spectrum analysis</topic><topic>Time dependence</topic><topic>Time of flight photoelectron coincidence spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborn, David L.</creatorcontrib><creatorcontrib>Hayden, Carl C.</creatorcontrib><creatorcontrib>Hemberger, Patrick</creatorcontrib><creatorcontrib>Bodi, Andras</creatorcontrib><creatorcontrib>Voronova, Krisztina</creatorcontrib><creatorcontrib>Sztáray, Bálint</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborn, David L.</au><au>Hayden, Carl C.</au><au>Hemberger, Patrick</au><au>Bodi, Andras</au><au>Voronova, Krisztina</au><au>Sztáray, Bálint</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking through the false coincidence barrier in electron–ion coincidence experiments</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-10-28</date><risdate>2016</risdate><volume>145</volume><issue>16</issue><spage>164202</spage><epage>164202</epage><pages>164202-164202</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9
+, whereas Ar4
+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27802642</pmid><doi>10.1063/1.4965428</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1251-4549</orcidid><orcidid>https://orcid.org/0000000212514549</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-10, Vol.145 (16), p.164202-164202 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_27802642 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Chemical reactions CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Deflection Dynamic range INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ion detectors Ion impact Ion pairs Ionization Organic chemistry Position sensing Quantitative analysis Sensitivity analysis Spectral sensitivity Spectrum analysis Time dependence Time of flight photoelectron coincidence spectroscopy |
title | Breaking through the false coincidence barrier in electron–ion coincidence experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20through%20the%20false%20coincidence%20barrier%20in%20electron%E2%80%93ion%20coincidence%20experiments&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Osborn,%20David%20L.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-10-28&rft.volume=145&rft.issue=16&rft.spage=164202&rft.epage=164202&rft.pages=164202-164202&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4965428&rft_dat=%3Cproquest_pubme%3E2121576693%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-860d2635b08dc5449cf667b62e34656b537b4640559e62213c840611943df88b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121576693&rft_id=info:pmid/27802642&rfr_iscdi=true |