Loading…
Feedback control policies employed by people using intracortical brain-computer interfaces
Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of th...
Saved in:
Published in: | Journal of neural engineering 2017-02, Vol.14 (1), p.016001-016001 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03 |
container_end_page | 016001 |
container_issue | 1 |
container_start_page | 016001 |
container_title | Journal of neural engineering |
container_volume | 14 |
creator | Willett, Francis R Pandarinath, Chethan Jarosiewicz, Beata Murphy, Brian A Memberg, William D Blabe, Christine H Saab, Jad Walter, Benjamin L Sweet, Jennifer A Miller, Jonathan P Henderson, Jaimie M Shenoy, Krishna V Simeral, John D Hochberg, Leigh R Kirsch, Robert F Ajiboye, A Bolu |
description | Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements. |
doi_str_mv | 10.1088/1741-2560/14/1/016001 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_27900953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845248663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03</originalsourceid><addsrcrecordid>eNqFUU1LxTAQDKL4_ROUHr3Ut2matL0IIn6B4EUvXkKabjWaNjVphffvTXnPh5487bIzO7vMEHJC4ZxCWS5okdM04wIWNF_QBVABQLfI_nrOs-1NL2CPHITwDsBoUcEu2ctigYqzffJyg9jUSn8k2vWjdzYZnDXaYEiwG6xbYpPUy2RAN1hMpmD618REotLOj0Yrm9RemT7VrhumEf0Mom-VxnBEdlplAx6v6yF5vrl-urpLHx5v768uH1KdczambVtozGrNW97QgmnkDOqqVVXBciEEMmAAtagroXnBeY4Na0WEq7KpVNEAOyQXK91hqjtsNM7vWTl40ym_lE4Z-RfpzZt8dV-SZ6yKilHgbC3g3eeEYZSdCRqtVT26KUha5jzLSyFYpPIVVXsXgsd2c4aCnHORs-dy9lzSXFK5yiXunf7-cbP1E0Qk0BXBuEG-u8n30bJ_RL8BnISZ-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845248663</pqid></control><display><type>article</type><title>Feedback control policies employed by people using intracortical brain-computer interfaces</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Willett, Francis R ; Pandarinath, Chethan ; Jarosiewicz, Beata ; Murphy, Brian A ; Memberg, William D ; Blabe, Christine H ; Saab, Jad ; Walter, Benjamin L ; Sweet, Jennifer A ; Miller, Jonathan P ; Henderson, Jaimie M ; Shenoy, Krishna V ; Simeral, John D ; Hochberg, Leigh R ; Kirsch, Robert F ; Ajiboye, A Bolu</creator><creatorcontrib>Willett, Francis R ; Pandarinath, Chethan ; Jarosiewicz, Beata ; Murphy, Brian A ; Memberg, William D ; Blabe, Christine H ; Saab, Jad ; Walter, Benjamin L ; Sweet, Jennifer A ; Miller, Jonathan P ; Henderson, Jaimie M ; Shenoy, Krishna V ; Simeral, John D ; Hochberg, Leigh R ; Kirsch, Robert F ; Ajiboye, A Bolu</creatorcontrib><description>Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2560/14/1/016001</identifier><identifier>PMID: 27900953</identifier><identifier>CODEN: JNEIEZ</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biofeedback, Psychology - methods ; Biofeedback, Psychology - physiology ; Brain - physiology ; brain-computer interface ; Computer Simulation ; Evoked Potentials, Motor - physiology ; Feedback, Physiological - physiology ; Female ; Humans ; Imagination - physiology ; Male ; Middle Aged ; Models, Neurological ; motor control ; motor cortex ; Movement - physiology ; Pilot Projects ; Task Performance and Analysis</subject><ispartof>Journal of neural engineering, 2017-02, Vol.14 (1), p.016001-016001</ispartof><rights>2016 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03</citedby><cites>FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27900953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willett, Francis R</creatorcontrib><creatorcontrib>Pandarinath, Chethan</creatorcontrib><creatorcontrib>Jarosiewicz, Beata</creatorcontrib><creatorcontrib>Murphy, Brian A</creatorcontrib><creatorcontrib>Memberg, William D</creatorcontrib><creatorcontrib>Blabe, Christine H</creatorcontrib><creatorcontrib>Saab, Jad</creatorcontrib><creatorcontrib>Walter, Benjamin L</creatorcontrib><creatorcontrib>Sweet, Jennifer A</creatorcontrib><creatorcontrib>Miller, Jonathan P</creatorcontrib><creatorcontrib>Henderson, Jaimie M</creatorcontrib><creatorcontrib>Shenoy, Krishna V</creatorcontrib><creatorcontrib>Simeral, John D</creatorcontrib><creatorcontrib>Hochberg, Leigh R</creatorcontrib><creatorcontrib>Kirsch, Robert F</creatorcontrib><creatorcontrib>Ajiboye, A Bolu</creatorcontrib><title>Feedback control policies employed by people using intracortical brain-computer interfaces</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.</description><subject>Biofeedback, Psychology - methods</subject><subject>Biofeedback, Psychology - physiology</subject><subject>Brain - physiology</subject><subject>brain-computer interface</subject><subject>Computer Simulation</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Feedback, Physiological - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Imagination - physiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Neurological</subject><subject>motor control</subject><subject>motor cortex</subject><subject>Movement - physiology</subject><subject>Pilot Projects</subject><subject>Task Performance and Analysis</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LxTAQDKL4_ROUHr3Ut2matL0IIn6B4EUvXkKabjWaNjVphffvTXnPh5487bIzO7vMEHJC4ZxCWS5okdM04wIWNF_QBVABQLfI_nrOs-1NL2CPHITwDsBoUcEu2ctigYqzffJyg9jUSn8k2vWjdzYZnDXaYEiwG6xbYpPUy2RAN1hMpmD618REotLOj0Yrm9RemT7VrhumEf0Mom-VxnBEdlplAx6v6yF5vrl-urpLHx5v768uH1KdczambVtozGrNW97QgmnkDOqqVVXBciEEMmAAtagroXnBeY4Na0WEq7KpVNEAOyQXK91hqjtsNM7vWTl40ym_lE4Z-RfpzZt8dV-SZ6yKilHgbC3g3eeEYZSdCRqtVT26KUha5jzLSyFYpPIVVXsXgsd2c4aCnHORs-dy9lzSXFK5yiXunf7-cbP1E0Qk0BXBuEG-u8n30bJ_RL8BnISZ-Q</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Willett, Francis R</creator><creator>Pandarinath, Chethan</creator><creator>Jarosiewicz, Beata</creator><creator>Murphy, Brian A</creator><creator>Memberg, William D</creator><creator>Blabe, Christine H</creator><creator>Saab, Jad</creator><creator>Walter, Benjamin L</creator><creator>Sweet, Jennifer A</creator><creator>Miller, Jonathan P</creator><creator>Henderson, Jaimie M</creator><creator>Shenoy, Krishna V</creator><creator>Simeral, John D</creator><creator>Hochberg, Leigh R</creator><creator>Kirsch, Robert F</creator><creator>Ajiboye, A Bolu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170201</creationdate><title>Feedback control policies employed by people using intracortical brain-computer interfaces</title><author>Willett, Francis R ; Pandarinath, Chethan ; Jarosiewicz, Beata ; Murphy, Brian A ; Memberg, William D ; Blabe, Christine H ; Saab, Jad ; Walter, Benjamin L ; Sweet, Jennifer A ; Miller, Jonathan P ; Henderson, Jaimie M ; Shenoy, Krishna V ; Simeral, John D ; Hochberg, Leigh R ; Kirsch, Robert F ; Ajiboye, A Bolu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biofeedback, Psychology - methods</topic><topic>Biofeedback, Psychology - physiology</topic><topic>Brain - physiology</topic><topic>brain-computer interface</topic><topic>Computer Simulation</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Feedback, Physiological - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Imagination - physiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Neurological</topic><topic>motor control</topic><topic>motor cortex</topic><topic>Movement - physiology</topic><topic>Pilot Projects</topic><topic>Task Performance and Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willett, Francis R</creatorcontrib><creatorcontrib>Pandarinath, Chethan</creatorcontrib><creatorcontrib>Jarosiewicz, Beata</creatorcontrib><creatorcontrib>Murphy, Brian A</creatorcontrib><creatorcontrib>Memberg, William D</creatorcontrib><creatorcontrib>Blabe, Christine H</creatorcontrib><creatorcontrib>Saab, Jad</creatorcontrib><creatorcontrib>Walter, Benjamin L</creatorcontrib><creatorcontrib>Sweet, Jennifer A</creatorcontrib><creatorcontrib>Miller, Jonathan P</creatorcontrib><creatorcontrib>Henderson, Jaimie M</creatorcontrib><creatorcontrib>Shenoy, Krishna V</creatorcontrib><creatorcontrib>Simeral, John D</creatorcontrib><creatorcontrib>Hochberg, Leigh R</creatorcontrib><creatorcontrib>Kirsch, Robert F</creatorcontrib><creatorcontrib>Ajiboye, A Bolu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willett, Francis R</au><au>Pandarinath, Chethan</au><au>Jarosiewicz, Beata</au><au>Murphy, Brian A</au><au>Memberg, William D</au><au>Blabe, Christine H</au><au>Saab, Jad</au><au>Walter, Benjamin L</au><au>Sweet, Jennifer A</au><au>Miller, Jonathan P</au><au>Henderson, Jaimie M</au><au>Shenoy, Krishna V</au><au>Simeral, John D</au><au>Hochberg, Leigh R</au><au>Kirsch, Robert F</au><au>Ajiboye, A Bolu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback control policies employed by people using intracortical brain-computer interfaces</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>14</volume><issue>1</issue><spage>016001</spage><epage>016001</epage><pages>016001-016001</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEIEZ</coden><abstract>Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27900953</pmid><doi>10.1088/1741-2560/14/1/016001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2017-02, Vol.14 (1), p.016001-016001 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_pubmed_primary_27900953 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Biofeedback, Psychology - methods Biofeedback, Psychology - physiology Brain - physiology brain-computer interface Computer Simulation Evoked Potentials, Motor - physiology Feedback, Physiological - physiology Female Humans Imagination - physiology Male Middle Aged Models, Neurological motor control motor cortex Movement - physiology Pilot Projects Task Performance and Analysis |
title | Feedback control policies employed by people using intracortical brain-computer interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20control%20policies%20employed%20by%20people%20using%20intracortical%20brain-computer%20interfaces&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Willett,%20Francis%20R&rft.date=2017-02-01&rft.volume=14&rft.issue=1&rft.spage=016001&rft.epage=016001&rft.pages=016001-016001&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEIEZ&rft_id=info:doi/10.1088/1741-2560/14/1/016001&rft_dat=%3Cproquest_pubme%3E1845248663%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-ff7ce2bc5f5d173ce530b9fa9734666e30300b6b96c57554ed3f6fa998d9a7d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1845248663&rft_id=info:pmid/27900953&rfr_iscdi=true |