Loading…

Learning With Label Proportions via NPSVM

Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2017-10, Vol.47 (10), p.3293-3305
Main Authors: Qi, Zhiquan, Wang, Bo, Meng, Fan, Niu, Lingfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3
cites cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3
container_end_page 3305
container_issue 10
container_start_page 3293
container_title IEEE transactions on cybernetics
container_volume 47
creator Qi, Zhiquan
Wang, Bo
Meng, Fan
Niu, Lingfeng
description Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.
doi_str_mv 10.1109/TCYB.2016.2598749
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28113650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7549044</ieee_id><sourcerecordid>1861598831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVmp_gAiy4EUPWzP5zlGLX7Bqwap4Ctltqlu2uzXZFfz3prT2YC4Jk2deZh6EjgAPAbC-mIzer4YEgxgSrpVkegcdEBAqJUTy3e1byB4ahDDH8ahY0mof9YgCoILjA3SeOevrsv5I3sr2M8ls7qpk7Jtl49uyqUPyXdrkcfz8-nCI9ma2Cm6wufvo5eZ6MrpLs6fb-9FllhaU6TYFZoXMNXEErCZCkdxazq3DVklswTmmMCFQcJgKjZkUU0k1o1PpcpVjm9M-OlvnLn3z1bnQmkUZCldVtnZNFwwoAXFhRSGip__QedP5Ok5nQFNBOMWCRwrWVOGbELybmaUvF9b_GMBmpdKsVJqVSrNRGXtONsldvnDTbcefuAgcr4HSObf9lpzFnRj9BeBPc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936253065</pqid></control><display><type>article</type><title>Learning With Label Proportions via NPSVM</title><source>IEEE Xplore (Online service)</source><creator>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</creator><creatorcontrib>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</creatorcontrib><description>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2016.2598749</identifier><identifier>PMID: 28113650</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -plane clustering ; Clustering ; Combinatorial analysis ; Cybernetics ; Estimation ; Fans ; Gaussian distribution ; Learning ; learning with label proportions (LLPs) ; nonparallel support vector machine (NPSVM) ; Numerical stability ; Optimization ; Planes ; Reliability ; Robustness (mathematics) ; Support vector machines</subject><ispartof>IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3293-3305</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</citedby><cites>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</cites><orcidid>0000-0002-5827-8449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7549044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Niu, Lingfeng</creatorcontrib><title>Learning With Label Proportions via NPSVM</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -plane clustering</subject><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Cybernetics</subject><subject>Estimation</subject><subject>Fans</subject><subject>Gaussian distribution</subject><subject>Learning</subject><subject>learning with label proportions (LLPs)</subject><subject>nonparallel support vector machine (NPSVM)</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Planes</subject><subject>Reliability</subject><subject>Robustness (mathematics)</subject><subject>Support vector machines</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoVmp_gAiy4EUPWzP5zlGLX7Bqwap4Ctltqlu2uzXZFfz3prT2YC4Jk2deZh6EjgAPAbC-mIzer4YEgxgSrpVkegcdEBAqJUTy3e1byB4ahDDH8ahY0mof9YgCoILjA3SeOevrsv5I3sr2M8ls7qpk7Jtl49uyqUPyXdrkcfz8-nCI9ma2Cm6wufvo5eZ6MrpLs6fb-9FllhaU6TYFZoXMNXEErCZCkdxazq3DVklswTmmMCFQcJgKjZkUU0k1o1PpcpVjm9M-OlvnLn3z1bnQmkUZCldVtnZNFwwoAXFhRSGip__QedP5Ok5nQFNBOMWCRwrWVOGbELybmaUvF9b_GMBmpdKsVJqVSrNRGXtONsldvnDTbcefuAgcr4HSObf9lpzFnRj9BeBPc8g</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Qi, Zhiquan</creator><creator>Wang, Bo</creator><creator>Meng, Fan</creator><creator>Niu, Lingfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5827-8449</orcidid></search><sort><creationdate>20171001</creationdate><title>Learning With Label Proportions via NPSVM</title><author>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -plane clustering</topic><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Cybernetics</topic><topic>Estimation</topic><topic>Fans</topic><topic>Gaussian distribution</topic><topic>Learning</topic><topic>learning with label proportions (LLPs)</topic><topic>nonparallel support vector machine (NPSVM)</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Planes</topic><topic>Reliability</topic><topic>Robustness (mathematics)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Niu, Lingfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Zhiquan</au><au>Wang, Bo</au><au>Meng, Fan</au><au>Niu, Lingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning With Label Proportions via NPSVM</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>3293</spage><epage>3305</epage><pages>3293-3305</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113650</pmid><doi>10.1109/TCYB.2016.2598749</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5827-8449</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3293-3305
issn 2168-2267
2168-2275
language eng
recordid cdi_pubmed_primary_28113650
source IEEE Xplore (Online service)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -plane clustering
Clustering
Combinatorial analysis
Cybernetics
Estimation
Fans
Gaussian distribution
Learning
learning with label proportions (LLPs)
nonparallel support vector machine (NPSVM)
Numerical stability
Optimization
Planes
Reliability
Robustness (mathematics)
Support vector machines
title Learning With Label Proportions via NPSVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20With%20Label%20Proportions%20via%20NPSVM&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Qi,%20Zhiquan&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=3293&rft.epage=3305&rft.pages=3293-3305&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2016.2598749&rft_dat=%3Cproquest_pubme%3E1861598831%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936253065&rft_id=info:pmid/28113650&rft_ieee_id=7549044&rfr_iscdi=true