Loading…
Learning With Label Proportions via NPSVM
Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intr...
Saved in:
Published in: | IEEE transactions on cybernetics 2017-10, Vol.47 (10), p.3293-3305 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3 |
container_end_page | 3305 |
container_issue | 10 |
container_start_page | 3293 |
container_title | IEEE transactions on cybernetics |
container_volume | 47 |
creator | Qi, Zhiquan Wang, Bo Meng, Fan Niu, Lingfeng |
description | Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases. |
doi_str_mv | 10.1109/TCYB.2016.2598749 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28113650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7549044</ieee_id><sourcerecordid>1861598831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVmp_gAiy4EUPWzP5zlGLX7Bqwap4Ctltqlu2uzXZFfz3prT2YC4Jk2deZh6EjgAPAbC-mIzer4YEgxgSrpVkegcdEBAqJUTy3e1byB4ahDDH8ahY0mof9YgCoILjA3SeOevrsv5I3sr2M8ls7qpk7Jtl49uyqUPyXdrkcfz8-nCI9ma2Cm6wufvo5eZ6MrpLs6fb-9FllhaU6TYFZoXMNXEErCZCkdxazq3DVklswTmmMCFQcJgKjZkUU0k1o1PpcpVjm9M-OlvnLn3z1bnQmkUZCldVtnZNFwwoAXFhRSGip__QedP5Ok5nQFNBOMWCRwrWVOGbELybmaUvF9b_GMBmpdKsVJqVSrNRGXtONsldvnDTbcefuAgcr4HSObf9lpzFnRj9BeBPc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936253065</pqid></control><display><type>article</type><title>Learning With Label Proportions via NPSVM</title><source>IEEE Xplore (Online service)</source><creator>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</creator><creatorcontrib>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</creatorcontrib><description>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2016.2598749</identifier><identifier>PMID: 28113650</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -plane clustering ; Clustering ; Combinatorial analysis ; Cybernetics ; Estimation ; Fans ; Gaussian distribution ; Learning ; learning with label proportions (LLPs) ; nonparallel support vector machine (NPSVM) ; Numerical stability ; Optimization ; Planes ; Reliability ; Robustness (mathematics) ; Support vector machines</subject><ispartof>IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3293-3305</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</citedby><cites>FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</cites><orcidid>0000-0002-5827-8449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7549044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28113650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Niu, Lingfeng</creatorcontrib><title>Learning With Label Proportions via NPSVM</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -plane clustering</subject><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Cybernetics</subject><subject>Estimation</subject><subject>Fans</subject><subject>Gaussian distribution</subject><subject>Learning</subject><subject>learning with label proportions (LLPs)</subject><subject>nonparallel support vector machine (NPSVM)</subject><subject>Numerical stability</subject><subject>Optimization</subject><subject>Planes</subject><subject>Reliability</subject><subject>Robustness (mathematics)</subject><subject>Support vector machines</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoVmp_gAiy4EUPWzP5zlGLX7Bqwap4Ctltqlu2uzXZFfz3prT2YC4Jk2deZh6EjgAPAbC-mIzer4YEgxgSrpVkegcdEBAqJUTy3e1byB4ahDDH8ahY0mof9YgCoILjA3SeOevrsv5I3sr2M8ls7qpk7Jtl49uyqUPyXdrkcfz8-nCI9ma2Cm6wufvo5eZ6MrpLs6fb-9FllhaU6TYFZoXMNXEErCZCkdxazq3DVklswTmmMCFQcJgKjZkUU0k1o1PpcpVjm9M-OlvnLn3z1bnQmkUZCldVtnZNFwwoAXFhRSGip__QedP5Ok5nQFNBOMWCRwrWVOGbELybmaUvF9b_GMBmpdKsVJqVSrNRGXtONsldvnDTbcefuAgcr4HSObf9lpzFnRj9BeBPc8g</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Qi, Zhiquan</creator><creator>Wang, Bo</creator><creator>Meng, Fan</creator><creator>Niu, Lingfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5827-8449</orcidid></search><sort><creationdate>20171001</creationdate><title>Learning With Label Proportions via NPSVM</title><author>Qi, Zhiquan ; Wang, Bo ; Meng, Fan ; Niu, Lingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -plane clustering</topic><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Cybernetics</topic><topic>Estimation</topic><topic>Fans</topic><topic>Gaussian distribution</topic><topic>Learning</topic><topic>learning with label proportions (LLPs)</topic><topic>nonparallel support vector machine (NPSVM)</topic><topic>Numerical stability</topic><topic>Optimization</topic><topic>Planes</topic><topic>Reliability</topic><topic>Robustness (mathematics)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Zhiquan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Meng, Fan</creatorcontrib><creatorcontrib>Niu, Lingfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Zhiquan</au><au>Wang, Bo</au><au>Meng, Fan</au><au>Niu, Lingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning With Label Proportions via NPSVM</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>47</volume><issue>10</issue><spage>3293</spage><epage>3305</epage><pages>3293-3305</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Recently, learning from label proportions (LLPs), which seeks generalized instance-level predictors merely based on bag-level label proportions, has attracted widespread interest. However, due to its weak label scenario, LLP usually falls into a transductive learning framework accounting for an intractable combinatorial optimization issue. In this paper, we propose a brand new algorithm, called LLPs via nonparallel support vector machine (LLP-NPSVM), to facilitate this dilemma. To harness satisfactory data adaption, instead of transductive learning fashion, our scheme determined instance labels according to two nonparallel hyper-planes under the supervision of label proportion information. In a geometrical view, our approach can be interpreted as an alternative competitive method benefiting from large margin clustering. In practice, LLP-NPSVM can be efficiently addressed by applying two fast sequential minimal optimization paths iteratively. To rationally support the effectiveness of our method, finite termination and monotonic decrease of the proposed LLP-NPSVM procedure were essentially analyzed. Various experiments demonstrated our algorithm enjoys rapid convergence and robust numerical stability, along with best accuracies among several recently developed methods in most cases.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28113650</pmid><doi>10.1109/TCYB.2016.2598749</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5827-8449</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2017-10, Vol.47 (10), p.3293-3305 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_pubmed_primary_28113650 |
source | IEEE Xplore (Online service) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -plane clustering Clustering Combinatorial analysis Cybernetics Estimation Fans Gaussian distribution Learning learning with label proportions (LLPs) nonparallel support vector machine (NPSVM) Numerical stability Optimization Planes Reliability Robustness (mathematics) Support vector machines |
title | Learning With Label Proportions via NPSVM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20With%20Label%20Proportions%20via%20NPSVM&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Qi,%20Zhiquan&rft.date=2017-10-01&rft.volume=47&rft.issue=10&rft.spage=3293&rft.epage=3305&rft.pages=3293-3305&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2016.2598749&rft_dat=%3Cproquest_pubme%3E1861598831%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-14a67b92e21a92682baa55ae0a870a1ee480221c51d690476d73943d7eb8b0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936253065&rft_id=info:pmid/28113650&rft_ieee_id=7549044&rfr_iscdi=true |