Loading…

Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer

Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific...

Full description

Saved in:
Bibliographic Details
Published in:2011 IEEE International Conference on Bioinformatics and Biomedicine 2011-11, Vol.2011, p.422-425
Main Authors: Kothari, Sonal, Phan, John H., Young, Andrew N., Wang, May D.
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 425
container_issue
container_start_page 422
container_title 2011 IEEE International Conference on Bioinformatics and Biomedicine
container_volume 2011
creator Kothari, Sonal
Phan, John H.
Young, Andrew N.
Wang, May D.
description Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.
doi_str_mv 10.1109/BIBM.2011.112
format article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_pubmed_primary_28163980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6120479</ieee_id><sourcerecordid>1865528539</sourcerecordid><originalsourceid>FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3</originalsourceid><addsrcrecordid>eNpVkEtLxDAQxwMqvo-eBOnRy2om2bwugruuurCiiB48lbSd1kjbrElX8Nsb8YHOZV6_-c8whBwAPQGg5nQyn9ycMAqQUrZGdmAslAJljFkn2wyEHKW62CA7n4zhSiu1RfZjfKHJpNRKm02yxTRIbjTdJk_XLg6-9Y0rbZvNO9tgdol2WAXMblzv-ia7xze0bcxmHYYG-yG7cLbpfRxcmd0Fv8QwOIxZ7UNC-6QytX2JYY9s1GkM97_9Lnm8nD1Mr0eL26v59HwxcpyJYaSYELUqJVMFlJRqgRJoVdvC1mWRQsN1DUVNJVhq6koXMJYFZ5JBxQs6rvguOfvSXa6KDqsyXRhsmy-D62x4z711-f9O757zxr_lgqXnUJkEjr8Fgn9dYRzyzsUS29b26FcxBy1FYgU3CT36u-t3yc8_E3D4BThE_G1LYHSsDP8AadaEOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865528539</pqid></control><display><type>article</type><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</creator><creatorcontrib>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</creatorcontrib><description>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</description><identifier>ISSN: 2156-1125</identifier><identifier>ISBN: 1457717999</identifier><identifier>ISBN: 9781457717994</identifier><identifier>DOI: 10.1109/BIBM.2011.112</identifier><identifier>PMID: 28163980</identifier><identifier>LCCN: 2011937877</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; computer-aided diagnosis ; Feature extraction ; histology ; Image color analysis ; image mining ; Image segmentation ; Shape ; Tiles ; Topology</subject><ispartof>2011 IEEE International Conference on Bioinformatics and Biomedicine, 2011-11, Vol.2011, p.422-425</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6120479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6120479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28163980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothari, Sonal</creatorcontrib><creatorcontrib>Phan, John H.</creatorcontrib><creatorcontrib>Young, Andrew N.</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><title>2011 IEEE International Conference on Bioinformatics and Biomedicine</title><addtitle>bibm</addtitle><addtitle>Proceedings (IEEE Int Conf Bioinformatics Biomed)</addtitle><description>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</description><subject>Cancer</subject><subject>computer-aided diagnosis</subject><subject>Feature extraction</subject><subject>histology</subject><subject>Image color analysis</subject><subject>image mining</subject><subject>Image segmentation</subject><subject>Shape</subject><subject>Tiles</subject><subject>Topology</subject><issn>2156-1125</issn><isbn>1457717999</isbn><isbn>9781457717994</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtLxDAQxwMqvo-eBOnRy2om2bwugruuurCiiB48lbSd1kjbrElX8Nsb8YHOZV6_-c8whBwAPQGg5nQyn9ycMAqQUrZGdmAslAJljFkn2wyEHKW62CA7n4zhSiu1RfZjfKHJpNRKm02yxTRIbjTdJk_XLg6-9Y0rbZvNO9tgdol2WAXMblzv-ia7xze0bcxmHYYG-yG7cLbpfRxcmd0Fv8QwOIxZ7UNC-6QytX2JYY9s1GkM97_9Lnm8nD1Mr0eL26v59HwxcpyJYaSYELUqJVMFlJRqgRJoVdvC1mWRQsN1DUVNJVhq6koXMJYFZ5JBxQs6rvguOfvSXa6KDqsyXRhsmy-D62x4z711-f9O757zxr_lgqXnUJkEjr8Fgn9dYRzyzsUS29b26FcxBy1FYgU3CT36u-t3yc8_E3D4BThE_G1LYHSsDP8AadaEOA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Kothari, Sonal</creator><creator>Phan, John H.</creator><creator>Young, Andrew N.</creator><creator>Wang, May D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><author>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cancer</topic><topic>computer-aided diagnosis</topic><topic>Feature extraction</topic><topic>histology</topic><topic>Image color analysis</topic><topic>image mining</topic><topic>Image segmentation</topic><topic>Shape</topic><topic>Tiles</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kothari, Sonal</creatorcontrib><creatorcontrib>Phan, John H.</creatorcontrib><creatorcontrib>Young, Andrew N.</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2011 IEEE International Conference on Bioinformatics and Biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothari, Sonal</au><au>Phan, John H.</au><au>Young, Andrew N.</au><au>Wang, May D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</atitle><jtitle>2011 IEEE International Conference on Bioinformatics and Biomedicine</jtitle><stitle>bibm</stitle><addtitle>Proceedings (IEEE Int Conf Bioinformatics Biomed)</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>2011</volume><spage>422</spage><epage>425</epage><pages>422-425</pages><issn>2156-1125</issn><isbn>1457717999</isbn><isbn>9781457717994</isbn><abstract>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28163980</pmid><doi>10.1109/BIBM.2011.112</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-1125
ispartof 2011 IEEE International Conference on Bioinformatics and Biomedicine, 2011-11, Vol.2011, p.422-425
issn 2156-1125
language eng
recordid cdi_pubmed_primary_28163980
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cancer
computer-aided diagnosis
Feature extraction
histology
Image color analysis
image mining
Image segmentation
Shape
Tiles
Topology
title Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histological%20Image%20Feature%20Mining%20Reveals%20Emergent%20Diagnostic%20Properties%20for%20Renal%20Cancer&rft.jtitle=2011%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine&rft.au=Kothari,%20Sonal&rft.date=2011-11-01&rft.volume=2011&rft.spage=422&rft.epage=425&rft.pages=422-425&rft.issn=2156-1125&rft.isbn=1457717999&rft.isbn_list=9781457717994&rft_id=info:doi/10.1109/BIBM.2011.112&rft_dat=%3Cproquest_6IE%3E1865528539%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865528539&rft_id=info:pmid/28163980&rft_ieee_id=6120479&rfr_iscdi=true