Loading…
Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer
Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific...
Saved in:
Published in: | 2011 IEEE International Conference on Bioinformatics and Biomedicine 2011-11, Vol.2011, p.422-425 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 425 |
container_issue | |
container_start_page | 422 |
container_title | 2011 IEEE International Conference on Bioinformatics and Biomedicine |
container_volume | 2011 |
creator | Kothari, Sonal Phan, John H. Young, Andrew N. Wang, May D. |
description | Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. |
doi_str_mv | 10.1109/BIBM.2011.112 |
format | article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_pubmed_primary_28163980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6120479</ieee_id><sourcerecordid>1865528539</sourcerecordid><originalsourceid>FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3</originalsourceid><addsrcrecordid>eNpVkEtLxDAQxwMqvo-eBOnRy2om2bwugruuurCiiB48lbSd1kjbrElX8Nsb8YHOZV6_-c8whBwAPQGg5nQyn9ycMAqQUrZGdmAslAJljFkn2wyEHKW62CA7n4zhSiu1RfZjfKHJpNRKm02yxTRIbjTdJk_XLg6-9Y0rbZvNO9tgdol2WAXMblzv-ia7xze0bcxmHYYG-yG7cLbpfRxcmd0Fv8QwOIxZ7UNC-6QytX2JYY9s1GkM97_9Lnm8nD1Mr0eL26v59HwxcpyJYaSYELUqJVMFlJRqgRJoVdvC1mWRQsN1DUVNJVhq6koXMJYFZ5JBxQs6rvguOfvSXa6KDqsyXRhsmy-D62x4z711-f9O757zxr_lgqXnUJkEjr8Fgn9dYRzyzsUS29b26FcxBy1FYgU3CT36u-t3yc8_E3D4BThE_G1LYHSsDP8AadaEOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865528539</pqid></control><display><type>article</type><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</creator><creatorcontrib>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</creatorcontrib><description>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</description><identifier>ISSN: 2156-1125</identifier><identifier>ISBN: 1457717999</identifier><identifier>ISBN: 9781457717994</identifier><identifier>DOI: 10.1109/BIBM.2011.112</identifier><identifier>PMID: 28163980</identifier><identifier>LCCN: 2011937877</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; computer-aided diagnosis ; Feature extraction ; histology ; Image color analysis ; image mining ; Image segmentation ; Shape ; Tiles ; Topology</subject><ispartof>2011 IEEE International Conference on Bioinformatics and Biomedicine, 2011-11, Vol.2011, p.422-425</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6120479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6120479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28163980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothari, Sonal</creatorcontrib><creatorcontrib>Phan, John H.</creatorcontrib><creatorcontrib>Young, Andrew N.</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><title>2011 IEEE International Conference on Bioinformatics and Biomedicine</title><addtitle>bibm</addtitle><addtitle>Proceedings (IEEE Int Conf Bioinformatics Biomed)</addtitle><description>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</description><subject>Cancer</subject><subject>computer-aided diagnosis</subject><subject>Feature extraction</subject><subject>histology</subject><subject>Image color analysis</subject><subject>image mining</subject><subject>Image segmentation</subject><subject>Shape</subject><subject>Tiles</subject><subject>Topology</subject><issn>2156-1125</issn><isbn>1457717999</isbn><isbn>9781457717994</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><recordid>eNpVkEtLxDAQxwMqvo-eBOnRy2om2bwugruuurCiiB48lbSd1kjbrElX8Nsb8YHOZV6_-c8whBwAPQGg5nQyn9ycMAqQUrZGdmAslAJljFkn2wyEHKW62CA7n4zhSiu1RfZjfKHJpNRKm02yxTRIbjTdJk_XLg6-9Y0rbZvNO9tgdol2WAXMblzv-ia7xze0bcxmHYYG-yG7cLbpfRxcmd0Fv8QwOIxZ7UNC-6QytX2JYY9s1GkM97_9Lnm8nD1Mr0eL26v59HwxcpyJYaSYELUqJVMFlJRqgRJoVdvC1mWRQsN1DUVNJVhq6koXMJYFZ5JBxQs6rvguOfvSXa6KDqsyXRhsmy-D62x4z711-f9O757zxr_lgqXnUJkEjr8Fgn9dYRzyzsUS29b26FcxBy1FYgU3CT36u-t3yc8_E3D4BThE_G1LYHSsDP8AadaEOA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Kothari, Sonal</creator><creator>Phan, John H.</creator><creator>Young, Andrew N.</creator><creator>Wang, May D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111101</creationdate><title>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</title><author>Kothari, Sonal ; Phan, John H. ; Young, Andrew N. ; Wang, May D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cancer</topic><topic>computer-aided diagnosis</topic><topic>Feature extraction</topic><topic>histology</topic><topic>Image color analysis</topic><topic>image mining</topic><topic>Image segmentation</topic><topic>Shape</topic><topic>Tiles</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Kothari, Sonal</creatorcontrib><creatorcontrib>Phan, John H.</creatorcontrib><creatorcontrib>Young, Andrew N.</creatorcontrib><creatorcontrib>Wang, May D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2011 IEEE International Conference on Bioinformatics and Biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kothari, Sonal</au><au>Phan, John H.</au><au>Young, Andrew N.</au><au>Wang, May D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer</atitle><jtitle>2011 IEEE International Conference on Bioinformatics and Biomedicine</jtitle><stitle>bibm</stitle><addtitle>Proceedings (IEEE Int Conf Bioinformatics Biomed)</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>2011</volume><spage>422</spage><epage>425</epage><pages>422-425</pages><issn>2156-1125</issn><isbn>1457717999</isbn><isbn>9781457717994</isbn><abstract>Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an "optimal" diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28163980</pmid><doi>10.1109/BIBM.2011.112</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-1125 |
ispartof | 2011 IEEE International Conference on Bioinformatics and Biomedicine, 2011-11, Vol.2011, p.422-425 |
issn | 2156-1125 |
language | eng |
recordid | cdi_pubmed_primary_28163980 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cancer computer-aided diagnosis Feature extraction histology Image color analysis image mining Image segmentation Shape Tiles Topology |
title | Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histological%20Image%20Feature%20Mining%20Reveals%20Emergent%20Diagnostic%20Properties%20for%20Renal%20Cancer&rft.jtitle=2011%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine&rft.au=Kothari,%20Sonal&rft.date=2011-11-01&rft.volume=2011&rft.spage=422&rft.epage=425&rft.pages=422-425&rft.issn=2156-1125&rft.isbn=1457717999&rft.isbn_list=9781457717994&rft_id=info:doi/10.1109/BIBM.2011.112&rft_dat=%3Cproquest_6IE%3E1865528539%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i325t-7255f7c627b1c0085e610dfabafcb610938f1bf061a09fd8b146b32621d3b04d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865528539&rft_id=info:pmid/28163980&rft_ieee_id=6120479&rfr_iscdi=true |