Loading…
Observation and understanding of anisotropic strain relaxation in selectively grown SiGe fin structures
The performance of heterogeneous 3D transistor structures critically depends on the composition and strain state of the buffer, channel and source/drain regions. In this paper we used an in-line high resolution x-ray diffraction (HRXRD) tool to study in detail the composition and strain in selective...
Saved in:
Published in: | Nanotechnology 2017-04, Vol.28 (14), p.145703-145703 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of heterogeneous 3D transistor structures critically depends on the composition and strain state of the buffer, channel and source/drain regions. In this paper we used an in-line high resolution x-ray diffraction (HRXRD) tool to study in detail the composition and strain in selectively grown SiGe/Ge fin structures with widths down to 20 nm. For this purpose we arranged fins of identical dimensions into larger arrays which were then analyzed using an x-ray beam several tens of micrometers in size. Asymmetric reciprocal space maps measured both parallel and perpendicular to the fins allowed us to extract the lattice parameters in all three spatial directions. Our results demonstrate an anisotropic in-plane strain state of the selectively grown SiGe buffer in case of narrower fins with significantly reduced relaxation in the direction along the fin. This observation was verified using nano-beam electron diffraction, and is explained based on the reduced probability for dislocation half-loops to evolve in trenches narrower than a few times the critical radius. Moreover, we introduce and discuss in detail a methodology for the determination of the composition in case of an anisotropic in-plane strain state which differs from the procedure commonly used for blanket layers. Our findings verify the importance of in-line HRXRD measurements for process development and monitoring as well as the fundamental study of relaxation and defect formation in confined volumes. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/aa5fbb |