Loading…

Measurement and properties of the dose-area product ratio in external small-beam radiotherapy

In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2017-06, Vol.62 (12), p.4870-4883
Main Authors: Niemelä, Jarkko, Partanen, Mari, Ojala, Jarkko, Sipilä, Petri, Björkqvist, Mikko, Kapanen, Mika, Keyriläinen, Jani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3
cites cdi_FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3
container_end_page 4883
container_issue 12
container_start_page 4870
container_title Physics in medicine & biology
container_volume 62
creator Niemelä, Jarkko
Partanen, Mari
Ojala, Jarkko
Sipilä, Petri
Björkqvist, Mikko
Kapanen, Mika
Keyriläinen, Jani
description In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR20,10. With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR20,10 value.
doi_str_mv 10.1088/1361-6560/aa6861
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28327474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880083149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhq2qCJYtd07Ip6oHAh47cbzHCvUDCcQFjpU1scdqUBIHO5Hg35NogVN7GmnmeWdGD2OnIC5AGHMJSkOhKy0uEbXR8IltPlqf2UYIBcUOquqIHef8KASAkeUhO5JGybqsyw37c0uY50Q9DRPHwfMxxZHS1FLmMfDpL3EfMxWYCNeZn93EE05t5O3A6XmiNGDHc49dVzSE_TL0bVxyCceXL-wgYJfp5K1u2cPPH_dXv4ubu1_XV99vCqd0PRWyIYm7UmPjqyCwJEWuJpJQhx1IcOB1HcCZUEntateoEHxQjZNls4DCqy37tt-7fPg0U55s32ZHXYcDxTlbMEYIo6DcLajYoy7FnBMFO6a2x_RiQdhVql0N2tWg3UtdImdv2-emJ_8ReLe4AF_3QBtH-xjnVUm2Y99YLS1IW5pa2HF5ecvO_wH-9_ArkfaPCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880083149</pqid></control><display><type>article</type><title>Measurement and properties of the dose-area product ratio in external small-beam radiotherapy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Niemelä, Jarkko ; Partanen, Mari ; Ojala, Jarkko ; Sipilä, Petri ; Björkqvist, Mikko ; Kapanen, Mika ; Keyriläinen, Jani</creator><creatorcontrib>Niemelä, Jarkko ; Partanen, Mari ; Ojala, Jarkko ; Sipilä, Petri ; Björkqvist, Mikko ; Kapanen, Mika ; Keyriläinen, Jani</creatorcontrib><description>In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR20,10. With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR20,10 value.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aa6861</identifier><identifier>PMID: 28327474</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>beam quality parameter ; dose-area product ; dosimetry ; Monte Carlo ; Monte Carlo Method ; Phantoms, Imaging ; Photons - therapeutic use ; plane-parallel chamber ; Radiation Dosage ; Radiotherapy - methods ; Radiotherapy Dosage ; small-beam ; stereotactic radiation therapy ; Uncertainty</subject><ispartof>Physics in medicine &amp; biology, 2017-06, Vol.62 (12), p.4870-4883</ispartof><rights>2017 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3</citedby><cites>FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28327474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niemelä, Jarkko</creatorcontrib><creatorcontrib>Partanen, Mari</creatorcontrib><creatorcontrib>Ojala, Jarkko</creatorcontrib><creatorcontrib>Sipilä, Petri</creatorcontrib><creatorcontrib>Björkqvist, Mikko</creatorcontrib><creatorcontrib>Kapanen, Mika</creatorcontrib><creatorcontrib>Keyriläinen, Jani</creatorcontrib><title>Measurement and properties of the dose-area product ratio in external small-beam radiotherapy</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR20,10. With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR20,10 value.</description><subject>beam quality parameter</subject><subject>dose-area product</subject><subject>dosimetry</subject><subject>Monte Carlo</subject><subject>Monte Carlo Method</subject><subject>Phantoms, Imaging</subject><subject>Photons - therapeutic use</subject><subject>plane-parallel chamber</subject><subject>Radiation Dosage</subject><subject>Radiotherapy - methods</subject><subject>Radiotherapy Dosage</subject><subject>small-beam</subject><subject>stereotactic radiation therapy</subject><subject>Uncertainty</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAQhq2qCJYtd07Ip6oHAh47cbzHCvUDCcQFjpU1scdqUBIHO5Hg35NogVN7GmnmeWdGD2OnIC5AGHMJSkOhKy0uEbXR8IltPlqf2UYIBcUOquqIHef8KASAkeUhO5JGybqsyw37c0uY50Q9DRPHwfMxxZHS1FLmMfDpL3EfMxWYCNeZn93EE05t5O3A6XmiNGDHc49dVzSE_TL0bVxyCceXL-wgYJfp5K1u2cPPH_dXv4ubu1_XV99vCqd0PRWyIYm7UmPjqyCwJEWuJpJQhx1IcOB1HcCZUEntateoEHxQjZNls4DCqy37tt-7fPg0U55s32ZHXYcDxTlbMEYIo6DcLajYoy7FnBMFO6a2x_RiQdhVql0N2tWg3UtdImdv2-emJ_8ReLe4AF_3QBtH-xjnVUm2Y99YLS1IW5pa2HF5ecvO_wH-9_ArkfaPCQ</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Niemelä, Jarkko</creator><creator>Partanen, Mari</creator><creator>Ojala, Jarkko</creator><creator>Sipilä, Petri</creator><creator>Björkqvist, Mikko</creator><creator>Kapanen, Mika</creator><creator>Keyriläinen, Jani</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170621</creationdate><title>Measurement and properties of the dose-area product ratio in external small-beam radiotherapy</title><author>Niemelä, Jarkko ; Partanen, Mari ; Ojala, Jarkko ; Sipilä, Petri ; Björkqvist, Mikko ; Kapanen, Mika ; Keyriläinen, Jani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>beam quality parameter</topic><topic>dose-area product</topic><topic>dosimetry</topic><topic>Monte Carlo</topic><topic>Monte Carlo Method</topic><topic>Phantoms, Imaging</topic><topic>Photons - therapeutic use</topic><topic>plane-parallel chamber</topic><topic>Radiation Dosage</topic><topic>Radiotherapy - methods</topic><topic>Radiotherapy Dosage</topic><topic>small-beam</topic><topic>stereotactic radiation therapy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niemelä, Jarkko</creatorcontrib><creatorcontrib>Partanen, Mari</creatorcontrib><creatorcontrib>Ojala, Jarkko</creatorcontrib><creatorcontrib>Sipilä, Petri</creatorcontrib><creatorcontrib>Björkqvist, Mikko</creatorcontrib><creatorcontrib>Kapanen, Mika</creatorcontrib><creatorcontrib>Keyriläinen, Jani</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niemelä, Jarkko</au><au>Partanen, Mari</au><au>Ojala, Jarkko</au><au>Sipilä, Petri</au><au>Björkqvist, Mikko</au><au>Kapanen, Mika</au><au>Keyriläinen, Jani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement and properties of the dose-area product ratio in external small-beam radiotherapy</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>62</volume><issue>12</issue><spage>4870</spage><epage>4883</epage><pages>4870-4883</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR20,10, using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR20,10. With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR20,10 value.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28327474</pmid><doi>10.1088/1361-6560/aa6861</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2017-06, Vol.62 (12), p.4870-4883
issn 0031-9155
1361-6560
language eng
recordid cdi_pubmed_primary_28327474
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects beam quality parameter
dose-area product
dosimetry
Monte Carlo
Monte Carlo Method
Phantoms, Imaging
Photons - therapeutic use
plane-parallel chamber
Radiation Dosage
Radiotherapy - methods
Radiotherapy Dosage
small-beam
stereotactic radiation therapy
Uncertainty
title Measurement and properties of the dose-area product ratio in external small-beam radiotherapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20and%20properties%20of%20the%20dose-area%20product%20ratio%20in%20external%20small-beam%20radiotherapy&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Niemel%C3%A4,%20Jarkko&rft.date=2017-06-21&rft.volume=62&rft.issue=12&rft.spage=4870&rft.epage=4883&rft.pages=4870-4883&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aa6861&rft_dat=%3Cproquest_pubme%3E1880083149%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-2be2a946abd5f0a4e3ec7ee217f9121c1d67f1c8f526c7cb3ffdf3bc24bec70d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880083149&rft_id=info:pmid/28327474&rfr_iscdi=true