Loading…

Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties

Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2017-05, Vol.28 (18), p.185602-185602
Main Authors: Merenkov, Ivan S, Kosinova, Marina L, Maximovskii, Eugene A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/aa677b