Loading…

Revisiting the definition of local hardness and hardness kernel

An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kern...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2017-05, Vol.19 (19), p.12355-12364
Main Authors: Polanco-Ramírez, Carlos A, Franco-Pérez, Marco, Carmona-Espíndola, Javier, Gázquez, José L, Ayers, Paul W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83
cites cdi_FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83
container_end_page 12364
container_issue 19
container_start_page 12355
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Polanco-Ramírez, Carlos A
Franco-Pérez, Marco
Carmona-Espíndola, Javier
Gázquez, José L
Ayers, Paul W
description An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition. Local hardness is redefined following similar rules to those of local softness. The new concept describes chemical trends correctly.
doi_str_mv 10.1039/c7cp00691h
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_28453014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893545564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rp68a7UmwjVpEnT5CRS_IIFRfQc8jFxq922Jl3Bf291192bp5mXeXgZHoQOCT4nmMoLW9gOYy7JbAuNCeM0lViw7fVe8BHai_ENY0xyQnfRKBMsp5iwMbp8gs8qVn3VvCb9DBIHvmqG2DZJ65O6tbpOZjq4BmJMdOM24R1CA_U-2vG6jnCwmhP0cnP9XN6l04fb-_Jqmlpa8D71hDqaiywDLpiRIIkD4bPhQTBZQSQxDBgxnAnDtXZcSi0NNp4xZwUxgk7Q6bK3C-3HAmKv5lW0UNe6gXYRFRGS5izPORvQsyVqQxtjAK-6UM11-FIEqx9hqizKx19hdwN8vOpdmDm4NfpnaABOlkCIdn3dGFed8wNz9B9DvwGrxXqm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893545564</pqid></control><display><type>article</type><title>Revisiting the definition of local hardness and hardness kernel</title><source>Royal Society of Chemistry</source><creator>Polanco-Ramírez, Carlos A ; Franco-Pérez, Marco ; Carmona-Espíndola, Javier ; Gázquez, José L ; Ayers, Paul W</creator><creatorcontrib>Polanco-Ramírez, Carlos A ; Franco-Pérez, Marco ; Carmona-Espíndola, Javier ; Gázquez, José L ; Ayers, Paul W</creatorcontrib><description>An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition. Local hardness is redefined following similar rules to those of local softness. The new concept describes chemical trends correctly.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp00691h</identifier><identifier>PMID: 28453014</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2017-05, Vol.19 (19), p.12355-12364</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83</citedby><cites>FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83</cites><orcidid>0000-0001-6685-7080 ; 0000-0003-1921-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28453014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polanco-Ramírez, Carlos A</creatorcontrib><creatorcontrib>Franco-Pérez, Marco</creatorcontrib><creatorcontrib>Carmona-Espíndola, Javier</creatorcontrib><creatorcontrib>Gázquez, José L</creatorcontrib><creatorcontrib>Ayers, Paul W</creatorcontrib><title>Revisiting the definition of local hardness and hardness kernel</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition. Local hardness is redefined following similar rules to those of local softness. The new concept describes chemical trends correctly.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rp68a7UmwjVpEnT5CRS_IIFRfQc8jFxq922Jl3Bf291192bp5mXeXgZHoQOCT4nmMoLW9gOYy7JbAuNCeM0lViw7fVe8BHai_ENY0xyQnfRKBMsp5iwMbp8gs8qVn3VvCb9DBIHvmqG2DZJ65O6tbpOZjq4BmJMdOM24R1CA_U-2vG6jnCwmhP0cnP9XN6l04fb-_Jqmlpa8D71hDqaiywDLpiRIIkD4bPhQTBZQSQxDBgxnAnDtXZcSi0NNp4xZwUxgk7Q6bK3C-3HAmKv5lW0UNe6gXYRFRGS5izPORvQsyVqQxtjAK-6UM11-FIEqx9hqizKx19hdwN8vOpdmDm4NfpnaABOlkCIdn3dGFed8wNz9B9DvwGrxXqm</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>Polanco-Ramírez, Carlos A</creator><creator>Franco-Pérez, Marco</creator><creator>Carmona-Espíndola, Javier</creator><creator>Gázquez, José L</creator><creator>Ayers, Paul W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6685-7080</orcidid><orcidid>https://orcid.org/0000-0003-1921-778X</orcidid></search><sort><creationdate>20170517</creationdate><title>Revisiting the definition of local hardness and hardness kernel</title><author>Polanco-Ramírez, Carlos A ; Franco-Pérez, Marco ; Carmona-Espíndola, Javier ; Gázquez, José L ; Ayers, Paul W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polanco-Ramírez, Carlos A</creatorcontrib><creatorcontrib>Franco-Pérez, Marco</creatorcontrib><creatorcontrib>Carmona-Espíndola, Javier</creatorcontrib><creatorcontrib>Gázquez, José L</creatorcontrib><creatorcontrib>Ayers, Paul W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polanco-Ramírez, Carlos A</au><au>Franco-Pérez, Marco</au><au>Carmona-Espíndola, Javier</au><au>Gázquez, José L</au><au>Ayers, Paul W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the definition of local hardness and hardness kernel</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017-05-17</date><risdate>2017</risdate><volume>19</volume><issue>19</issue><spage>12355</spage><epage>12364</epage><pages>12355-12364</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition. Local hardness is redefined following similar rules to those of local softness. The new concept describes chemical trends correctly.</abstract><cop>England</cop><pmid>28453014</pmid><doi>10.1039/c7cp00691h</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6685-7080</orcidid><orcidid>https://orcid.org/0000-0003-1921-778X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017-05, Vol.19 (19), p.12355-12364
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_28453014
source Royal Society of Chemistry
title Revisiting the definition of local hardness and hardness kernel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20definition%20of%20local%20hardness%20and%20hardness%20kernel&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Polanco-Ram%C3%ADrez,%20Carlos%20A&rft.date=2017-05-17&rft.volume=19&rft.issue=19&rft.spage=12355&rft.epage=12364&rft.pages=12355-12364&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp00691h&rft_dat=%3Cproquest_pubme%3E1893545564%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-f13d35822e684b9e91de8f2146eb27191b4e41b648b6aad699a9b0bf44dc81b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1893545564&rft_id=info:pmid/28453014&rfr_iscdi=true