Loading…
Localized shear generates three-dimensional transport
Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to many processes, including mixing, chemical reaction, and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shea...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2017-04, Vol.27 (4), p.043102-043102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to many processes, including mixing, chemical reaction, and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); however, this new mechanism is more rapid and mutually incompatible with RID. We explore its governing impact with both an abstract 2-action flow and a model fluid flow. We show that transitions from one-dimensional (1D) to two-dimensional (2D) and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two transverse directions. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/1.4979666 |