Loading…
Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy
We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born app...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2018-03, Vol.65 (3), p.528-538 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163 |
container_end_page | 538 |
container_issue | 3 |
container_start_page | 528 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 65 |
creator | Chen, Guanbo Stang, John Haynes, Mark Leuthardt, Eric Moghaddam, Mahta |
description | We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case. |
doi_str_mv | 10.1109/TBME.2017.2702182 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmed_primary_28489530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7921561</ieee_id><sourcerecordid>2174472782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMouj5-gAhS8OKlayZpmuToW8FFkXoOaTvVSB9r0lX892bZ1YOnmWG-GWY-Qg6BTgGoPisuZtdTRkFOmaQMFNsgExBCpUxw2CQTSkGlmulsh-yG8B7LTGX5NtlhKlNacDohT89o27RwHSbFm0dMr2LaBzf0tk1mrvLDl_3EZDb0bhy861-ToUnu-xF9GN3oIlS8oe_W0c6_98lWY9uAB-u4R15urovLu_Th8fb-8vwhrTIQY1pizUuKvKybkitbI42XUSobppscANAC140WtqqQc6VKGYFKNUKImnHI-R45Xe2d--FjgWE0nQsVtq3tcVgEA0pLRXOllujJP_R9WPj4YDAMZJZJJhWLFKyo-HMIHhsz966z_tsANUvdZqnbLHWbte44c7zevCg7rP8mfv1G4GgFOET8a0vNQOTAfwD8FYME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174472782</pqid></control><display><type>article</type><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</creator><creatorcontrib>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</creatorcontrib><description>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2017.2702182</identifier><identifier>PMID: 28489530</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Background noise ; Born approximation ; Brain ; Brain - diagnostic imaging ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - therapy ; Dielectric properties ; Dielectrics ; Distorted Born ; Electric fields ; Electrical properties ; Finite difference time domain method ; Forward problem ; Humans ; hyperthermia ; Hyperthermia, Induced - methods ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; inverse scattering ; Inversions ; Iterative methods ; Mathematical analysis ; Mathematical models ; Medical treatment ; microstrip patch antennas ; Microwave imaging ; Microwave theory and techniques ; Microwaves ; Monitoring ; Neuroimaging ; Neuroimaging - methods ; Noise ; Nonlinear Dynamics ; Real time ; Real-time systems ; Temperature effects ; Therapy ; thermal monitoring ; thermal therapy ; Time domain analysis ; Tissues ; Volume integral equations</subject><ispartof>IEEE transactions on biomedical engineering, 2018-03, Vol.65 (3), p.528-538</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</citedby><cites>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</cites><orcidid>0000-0003-2564-3195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7921561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54536,54777,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7921561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28489530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Haynes, Mark</creatorcontrib><creatorcontrib>Leuthardt, Eric</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>Born approximation</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - therapy</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Distorted Born</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Finite difference time domain method</subject><subject>Forward problem</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>Hyperthermia, Induced - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>inverse scattering</subject><subject>Inversions</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical treatment</subject><subject>microstrip patch antennas</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Microwaves</subject><subject>Monitoring</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Temperature effects</subject><subject>Therapy</subject><subject>thermal monitoring</subject><subject>thermal therapy</subject><subject>Time domain analysis</subject><subject>Tissues</subject><subject>Volume integral equations</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAQgIMouj5-gAhS8OKlayZpmuToW8FFkXoOaTvVSB9r0lX892bZ1YOnmWG-GWY-Qg6BTgGoPisuZtdTRkFOmaQMFNsgExBCpUxw2CQTSkGlmulsh-yG8B7LTGX5NtlhKlNacDohT89o27RwHSbFm0dMr2LaBzf0tk1mrvLDl_3EZDb0bhy861-ToUnu-xF9GN3oIlS8oe_W0c6_98lWY9uAB-u4R15urovLu_Th8fb-8vwhrTIQY1pizUuKvKybkitbI42XUSobppscANAC140WtqqQc6VKGYFKNUKImnHI-R45Xe2d--FjgWE0nQsVtq3tcVgEA0pLRXOllujJP_R9WPj4YDAMZJZJJhWLFKyo-HMIHhsz966z_tsANUvdZqnbLHWbte44c7zevCg7rP8mfv1G4GgFOET8a0vNQOTAfwD8FYME</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Chen, Guanbo</creator><creator>Stang, John</creator><creator>Haynes, Mark</creator><creator>Leuthardt, Eric</creator><creator>Moghaddam, Mahta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2564-3195</orcidid></search><sort><creationdate>20180301</creationdate><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><author>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>Born approximation</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - therapy</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Distorted Born</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Finite difference time domain method</topic><topic>Forward problem</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>Hyperthermia, Induced - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>inverse scattering</topic><topic>Inversions</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical treatment</topic><topic>microstrip patch antennas</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Microwaves</topic><topic>Monitoring</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Temperature effects</topic><topic>Therapy</topic><topic>thermal monitoring</topic><topic>thermal therapy</topic><topic>Time domain analysis</topic><topic>Tissues</topic><topic>Volume integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Haynes, Mark</creatorcontrib><creatorcontrib>Leuthardt, Eric</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Guanbo</au><au>Stang, John</au><au>Haynes, Mark</au><au>Leuthardt, Eric</au><au>Moghaddam, Mahta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>65</volume><issue>3</issue><spage>528</spage><epage>538</epage><pages>528-538</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28489530</pmid><doi>10.1109/TBME.2017.2702182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2564-3195</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2018-03, Vol.65 (3), p.528-538 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_pubmed_primary_28489530 |
source | IEEE Xplore All Conference Series |
subjects | Algorithms Approximation Background noise Born approximation Brain Brain - diagnostic imaging Brain Neoplasms - diagnostic imaging Brain Neoplasms - therapy Dielectric properties Dielectrics Distorted Born Electric fields Electrical properties Finite difference time domain method Forward problem Humans hyperthermia Hyperthermia, Induced - methods Image processing Image reconstruction Imaging, Three-Dimensional - methods inverse scattering Inversions Iterative methods Mathematical analysis Mathematical models Medical treatment microstrip patch antennas Microwave imaging Microwave theory and techniques Microwaves Monitoring Neuroimaging Neuroimaging - methods Noise Nonlinear Dynamics Real time Real-time systems Temperature effects Therapy thermal monitoring thermal therapy Time domain analysis Tissues Volume integral equations |
title | Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Three-Dimensional%20Microwave%20Monitoring%20of%20Interstitial%20Thermal%20Therapy&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Chen,%20Guanbo&rft.date=2018-03-01&rft.volume=65&rft.issue=3&rft.spage=528&rft.epage=538&rft.pages=528-538&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2017.2702182&rft_dat=%3Cproquest_CHZPO%3E2174472782%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174472782&rft_id=info:pmid/28489530&rft_ieee_id=7921561&rfr_iscdi=true |