Loading…

Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy

We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born app...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2018-03, Vol.65 (3), p.528-538
Main Authors: Chen, Guanbo, Stang, John, Haynes, Mark, Leuthardt, Eric, Moghaddam, Mahta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163
cites cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163
container_end_page 538
container_issue 3
container_start_page 528
container_title IEEE transactions on biomedical engineering
container_volume 65
creator Chen, Guanbo
Stang, John
Haynes, Mark
Leuthardt, Eric
Moghaddam, Mahta
description We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.
doi_str_mv 10.1109/TBME.2017.2702182
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_pubmed_primary_28489530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7921561</ieee_id><sourcerecordid>2174472782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMouj5-gAhS8OKlayZpmuToW8FFkXoOaTvVSB9r0lX892bZ1YOnmWG-GWY-Qg6BTgGoPisuZtdTRkFOmaQMFNsgExBCpUxw2CQTSkGlmulsh-yG8B7LTGX5NtlhKlNacDohT89o27RwHSbFm0dMr2LaBzf0tk1mrvLDl_3EZDb0bhy861-ToUnu-xF9GN3oIlS8oe_W0c6_98lWY9uAB-u4R15urovLu_Th8fb-8vwhrTIQY1pizUuKvKybkitbI42XUSobppscANAC140WtqqQc6VKGYFKNUKImnHI-R45Xe2d--FjgWE0nQsVtq3tcVgEA0pLRXOllujJP_R9WPj4YDAMZJZJJhWLFKyo-HMIHhsz966z_tsANUvdZqnbLHWbte44c7zevCg7rP8mfv1G4GgFOET8a0vNQOTAfwD8FYME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174472782</pqid></control><display><type>article</type><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</creator><creatorcontrib>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</creatorcontrib><description>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2017.2702182</identifier><identifier>PMID: 28489530</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Approximation ; Background noise ; Born approximation ; Brain ; Brain - diagnostic imaging ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - therapy ; Dielectric properties ; Dielectrics ; Distorted Born ; Electric fields ; Electrical properties ; Finite difference time domain method ; Forward problem ; Humans ; hyperthermia ; Hyperthermia, Induced - methods ; Image processing ; Image reconstruction ; Imaging, Three-Dimensional - methods ; inverse scattering ; Inversions ; Iterative methods ; Mathematical analysis ; Mathematical models ; Medical treatment ; microstrip patch antennas ; Microwave imaging ; Microwave theory and techniques ; Microwaves ; Monitoring ; Neuroimaging ; Neuroimaging - methods ; Noise ; Nonlinear Dynamics ; Real time ; Real-time systems ; Temperature effects ; Therapy ; thermal monitoring ; thermal therapy ; Time domain analysis ; Tissues ; Volume integral equations</subject><ispartof>IEEE transactions on biomedical engineering, 2018-03, Vol.65 (3), p.528-538</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</citedby><cites>FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</cites><orcidid>0000-0003-2564-3195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7921561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54536,54777,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7921561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28489530$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Haynes, Mark</creatorcontrib><creatorcontrib>Leuthardt, Eric</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Background noise</subject><subject>Born approximation</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - therapy</subject><subject>Dielectric properties</subject><subject>Dielectrics</subject><subject>Distorted Born</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Finite difference time domain method</subject><subject>Forward problem</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>Hyperthermia, Induced - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>inverse scattering</subject><subject>Inversions</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical treatment</subject><subject>microstrip patch antennas</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Microwaves</subject><subject>Monitoring</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Noise</subject><subject>Nonlinear Dynamics</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Temperature effects</subject><subject>Therapy</subject><subject>thermal monitoring</subject><subject>thermal therapy</subject><subject>Time domain analysis</subject><subject>Tissues</subject><subject>Volume integral equations</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAQgIMouj5-gAhS8OKlayZpmuToW8FFkXoOaTvVSB9r0lX892bZ1YOnmWG-GWY-Qg6BTgGoPisuZtdTRkFOmaQMFNsgExBCpUxw2CQTSkGlmulsh-yG8B7LTGX5NtlhKlNacDohT89o27RwHSbFm0dMr2LaBzf0tk1mrvLDl_3EZDb0bhy861-ToUnu-xF9GN3oIlS8oe_W0c6_98lWY9uAB-u4R15urovLu_Th8fb-8vwhrTIQY1pizUuKvKybkitbI42XUSobppscANAC140WtqqQc6VKGYFKNUKImnHI-R45Xe2d--FjgWE0nQsVtq3tcVgEA0pLRXOllujJP_R9WPj4YDAMZJZJJhWLFKyo-HMIHhsz966z_tsANUvdZqnbLHWbte44c7zevCg7rP8mfv1G4GgFOET8a0vNQOTAfwD8FYME</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Chen, Guanbo</creator><creator>Stang, John</creator><creator>Haynes, Mark</creator><creator>Leuthardt, Eric</creator><creator>Moghaddam, Mahta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2564-3195</orcidid></search><sort><creationdate>20180301</creationdate><title>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</title><author>Chen, Guanbo ; Stang, John ; Haynes, Mark ; Leuthardt, Eric ; Moghaddam, Mahta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Background noise</topic><topic>Born approximation</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - therapy</topic><topic>Dielectric properties</topic><topic>Dielectrics</topic><topic>Distorted Born</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Finite difference time domain method</topic><topic>Forward problem</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>Hyperthermia, Induced - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>inverse scattering</topic><topic>Inversions</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical treatment</topic><topic>microstrip patch antennas</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Microwaves</topic><topic>Monitoring</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Noise</topic><topic>Nonlinear Dynamics</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Temperature effects</topic><topic>Therapy</topic><topic>thermal monitoring</topic><topic>thermal therapy</topic><topic>Time domain analysis</topic><topic>Tissues</topic><topic>Volume integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guanbo</creatorcontrib><creatorcontrib>Stang, John</creatorcontrib><creatorcontrib>Haynes, Mark</creatorcontrib><creatorcontrib>Leuthardt, Eric</creatorcontrib><creatorcontrib>Moghaddam, Mahta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Guanbo</au><au>Stang, John</au><au>Haynes, Mark</au><au>Leuthardt, Eric</au><au>Moghaddam, Mahta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>65</volume><issue>3</issue><spage>528</spage><epage>538</epage><pages>528-538</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>We report a method for real-time threedimensional monitoring of thermal therapy through the use of noncontact microwave imaging. This method is predicated on using microwaves to image changes in the dielectric properties of tissue with changing temperature. Instead of the precomputed linear Born approximation that was used in prior work to speed up the frame-to-frame inversions, here we use the nonlinear distorted Born iterative method (DBIM) to solve the electric volume integral equation (VIE) to image the temperature change. This is made possible by using a recently developed graphic processing unit accelerated conformal finite difference time domain method to solve the forward problem and update the electric field in the monitored region in each DBIM iteration. Compared to our previous work, this approach provides a far superior approximation of the electric field within the VIE, and thus yields a more accurate reconstruction of tissue temperature change. The proposed method is validated using a realistic numerical model of interstitial thermal therapy for a deep-seated brain lesion. With the new DBIM, we reduced the average estimation error of the mean temperature within the region of interest from 2.5° to 1.0° for the noise-free case, and from 2.9° to 1.7° for the 2% background noise case.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28489530</pmid><doi>10.1109/TBME.2017.2702182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2564-3195</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2018-03, Vol.65 (3), p.528-538
issn 0018-9294
1558-2531
language eng
recordid cdi_pubmed_primary_28489530
source IEEE Xplore All Conference Series
subjects Algorithms
Approximation
Background noise
Born approximation
Brain
Brain - diagnostic imaging
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - therapy
Dielectric properties
Dielectrics
Distorted Born
Electric fields
Electrical properties
Finite difference time domain method
Forward problem
Humans
hyperthermia
Hyperthermia, Induced - methods
Image processing
Image reconstruction
Imaging, Three-Dimensional - methods
inverse scattering
Inversions
Iterative methods
Mathematical analysis
Mathematical models
Medical treatment
microstrip patch antennas
Microwave imaging
Microwave theory and techniques
Microwaves
Monitoring
Neuroimaging
Neuroimaging - methods
Noise
Nonlinear Dynamics
Real time
Real-time systems
Temperature effects
Therapy
thermal monitoring
thermal therapy
Time domain analysis
Tissues
Volume integral equations
title Real-Time Three-Dimensional Microwave Monitoring of Interstitial Thermal Therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Three-Dimensional%20Microwave%20Monitoring%20of%20Interstitial%20Thermal%20Therapy&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Chen,%20Guanbo&rft.date=2018-03-01&rft.volume=65&rft.issue=3&rft.spage=528&rft.epage=538&rft.pages=528-538&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2017.2702182&rft_dat=%3Cproquest_CHZPO%3E2174472782%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-bed3b0e3bdfb38ade0846007f29f6111ea139f95acce3388b7084c8f555d23163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174472782&rft_id=info:pmid/28489530&rft_ieee_id=7921561&rfr_iscdi=true