Loading…

Estimating thermodynamic expectations and free energies in expanded ensemble simulations: Systematic variance reduction through conditioning

Markov chain Monte Carlo methods are primarily used for sampling from a given probability distribution and estimating multi-dimensional integrals based on the information contained in the generated samples. Whenever it is possible, more accurate estimates are obtained by combining Monte Carlo integr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2017-05, Vol.146 (19), p.194101-194101
Main Authors: Athènes, Manuel, Terrier, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Markov chain Monte Carlo methods are primarily used for sampling from a given probability distribution and estimating multi-dimensional integrals based on the information contained in the generated samples. Whenever it is possible, more accurate estimates are obtained by combining Monte Carlo integration and integration by numerical quadrature along particular coordinates. We show that this variance reduction technique, referred to as conditioning in probability theory, can be advantageously implemented in expanded ensemble simulations. These simulations aim at estimating thermodynamic expectations as a function of an external parameter that is sampled like an additional coordinate. Conditioning therein entails integrating along the external coordinate by numerical quadrature. We prove variance reduction with respect to alternative standard estimators and demonstrate the practical efficiency of the technique by estimating free energies and characterizing a structural phase transition between two solid phases.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4983164