Loading…

Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode

We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-06, Vol.8, p.15881
Main Authors: Zhang, Xiankun, Liao, Qingliang, Liu, Shuo, Kang, Zhuo, Zhang, Zheng, Du, Junli, Li, Feng, Zhang, Shuhao, Xiao, Jiankun, Liu, Baishan, Ou, Yang, Liu, Xiaozhi, Gu, Lin, Zhang, Yue
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 15881
container_title Nature communications
container_volume 8
creator Zhang, Xiankun
Liao, Qingliang
Liu, Shuo
Kang, Zhuo
Zhang, Zheng
Du, Junli
Li, Feng
Zhang, Shuhao
Xiao, Jiankun
Liu, Baishan
Ou, Yang
Liu, Xiaozhi
Gu, Lin
Zhang, Yue
description We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.
doi_str_mv 10.1038/ncomms15881
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28639620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28639620</sourcerecordid><originalsourceid>FETCH-LOGICAL-p93t-bba9ca5539082ef4b5942c4257eceb52123f456a6f9398a25cfba04c73fa3ff3</originalsourceid><addsrcrecordid>eNo1j89LwzAcxYMgbsydvEuOeojmZ5ccZegUJgrzPtI0WTvafGvSCv3vnajv8uDD4wMPoStG7xgV-j466LrMlNbsDM05lYywFRcztMz5SE8RhmkpL9CM60KYgtM5-nyHdrqRJA9T8tHnsQ0Q7eBvSROr0fkK_6Ax4S_rbHQTzr4NpPa2beIB5yGdtocJB0i4gwitnXzCr7DDHNfQwXGMbmgg4r6GAaoGKn-JzoNts1_-9QLtnh4_1s9k-7Z5WT9sSW_EQMrSGmeVEoZq7oMslZHcSa5W3vlSccZFkKqwRTDCaMuVC6Wl0q1EsCIEsUDXv9Z-LDtf7fvUdDZN-__n4huGDVzn</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Xiankun ; Liao, Qingliang ; Liu, Shuo ; Kang, Zhuo ; Zhang, Zheng ; Du, Junli ; Li, Feng ; Zhang, Shuhao ; Xiao, Jiankun ; Liu, Baishan ; Ou, Yang ; Liu, Xiaozhi ; Gu, Lin ; Zhang, Yue</creator><creatorcontrib>Zhang, Xiankun ; Liao, Qingliang ; Liu, Shuo ; Kang, Zhuo ; Zhang, Zheng ; Du, Junli ; Li, Feng ; Zhang, Shuhao ; Xiao, Jiankun ; Liu, Baishan ; Ou, Yang ; Liu, Xiaozhi ; Gu, Lin ; Zhang, Yue</creatorcontrib><description>We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.</description><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms15881</identifier><identifier>PMID: 28639620</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature communications, 2017-06, Vol.8, p.15881</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28639620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiankun</creatorcontrib><creatorcontrib>Liao, Qingliang</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Kang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Du, Junli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhang, Shuhao</creatorcontrib><creatorcontrib>Xiao, Jiankun</creatorcontrib><creatorcontrib>Liu, Baishan</creatorcontrib><creatorcontrib>Ou, Yang</creatorcontrib><creatorcontrib>Liu, Xiaozhi</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.</description><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1j89LwzAcxYMgbsydvEuOeojmZ5ccZegUJgrzPtI0WTvafGvSCv3vnajv8uDD4wMPoStG7xgV-j466LrMlNbsDM05lYywFRcztMz5SE8RhmkpL9CM60KYgtM5-nyHdrqRJA9T8tHnsQ0Q7eBvSROr0fkK_6Ax4S_rbHQTzr4NpPa2beIB5yGdtocJB0i4gwitnXzCr7DDHNfQwXGMbmgg4r6GAaoGKn-JzoNts1_-9QLtnh4_1s9k-7Z5WT9sSW_EQMrSGmeVEoZq7oMslZHcSa5W3vlSccZFkKqwRTDCaMuVC6Wl0q1EsCIEsUDXv9Z-LDtf7fvUdDZN-__n4huGDVzn</recordid><startdate>20170622</startdate><enddate>20170622</enddate><creator>Zhang, Xiankun</creator><creator>Liao, Qingliang</creator><creator>Liu, Shuo</creator><creator>Kang, Zhuo</creator><creator>Zhang, Zheng</creator><creator>Du, Junli</creator><creator>Li, Feng</creator><creator>Zhang, Shuhao</creator><creator>Xiao, Jiankun</creator><creator>Liu, Baishan</creator><creator>Ou, Yang</creator><creator>Liu, Xiaozhi</creator><creator>Gu, Lin</creator><creator>Zhang, Yue</creator><scope>NPM</scope></search><sort><creationdate>20170622</creationdate><title>Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode</title><author>Zhang, Xiankun ; Liao, Qingliang ; Liu, Shuo ; Kang, Zhuo ; Zhang, Zheng ; Du, Junli ; Li, Feng ; Zhang, Shuhao ; Xiao, Jiankun ; Liu, Baishan ; Ou, Yang ; Liu, Xiaozhi ; Gu, Lin ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p93t-bba9ca5539082ef4b5942c4257eceb52123f456a6f9398a25cfba04c73fa3ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiankun</creatorcontrib><creatorcontrib>Liao, Qingliang</creatorcontrib><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Kang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Du, Junli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhang, Shuhao</creatorcontrib><creatorcontrib>Xiao, Jiankun</creatorcontrib><creatorcontrib>Liu, Baishan</creatorcontrib><creatorcontrib>Ou, Yang</creatorcontrib><creatorcontrib>Liu, Xiaozhi</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiankun</au><au>Liao, Qingliang</au><au>Liu, Shuo</au><au>Kang, Zhuo</au><au>Zhang, Zheng</au><au>Du, Junli</au><au>Li, Feng</au><au>Zhang, Shuhao</au><au>Xiao, Jiankun</au><au>Liu, Baishan</au><au>Ou, Yang</au><au>Liu, Xiaozhi</au><au>Gu, Lin</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2017-06-22</date><risdate>2017</risdate><volume>8</volume><spage>15881</spage><pages>15881-</pages><eissn>2041-1723</eissn><abstract>We establish a powerful poly(4-styrenesulfonate) (PSS)-treated strategy for sulfur vacancy healing in monolayer MoS to precisely and steadily tune its electronic state. The self-healing mechanism, in which the sulfur vacancies are healed spontaneously by the sulfur adatom clusters on the MoS surface through a PSS-induced hydrogenation process, is proposed and demonstrated systematically. The electron concentration of the self-healed MoS dramatically decreased by 643 times, leading to a work function enhancement of ∼150 meV. This strategy is employed to fabricate a high performance lateral monolayer MoS homojunction which presents a perfect rectifying behaviour, excellent photoresponsivity of ∼308 mA W and outstanding air-stability after two months. Unlike previous chemical doping, the lattice defect-induced local fields are eliminated during the process of the sulfur vacancy self-healing to largely improve the homojunction performance. Our findings demonstrate a promising and facile strategy in 2D material electronic state modulation for the development of next-generation electronics and optoelectronics.</abstract><cop>England</cop><pmid>28639620</pmid><doi>10.1038/ncomms15881</doi></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2017-06, Vol.8, p.15881
issn 2041-1723
language eng
recordid cdi_pubmed_primary_28639620
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
title Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS 2 homojunction photodiode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(4-styrenesulfonate)-induced%20sulfur%20vacancy%20self-healing%20strategy%20for%20monolayer%20MoS%202%20homojunction%20photodiode&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Xiankun&rft.date=2017-06-22&rft.volume=8&rft.spage=15881&rft.pages=15881-&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms15881&rft_dat=%3Cpubmed%3E28639620%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p93t-bba9ca5539082ef4b5942c4257eceb52123f456a6f9398a25cfba04c73fa3ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28639620&rfr_iscdi=true