Loading…

K ATP Channel Mutations and Neonatal Diabetes

Since the discovery of the K channel in 1983, numerous studies have revealed its physiological functions. The K channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical...

Full description

Saved in:
Bibliographic Details
Published in:Internal medicine (Tokyo, 1992) 1992), 2017-09, Vol.56 (18), p.2387
Main Authors: Shimomura, Kenju, Maejima, Yuko
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 18
container_start_page 2387
container_title Internal medicine (Tokyo, 1992)
container_volume 56
creator Shimomura, Kenju
Maejima, Yuko
description Since the discovery of the K channel in 1983, numerous studies have revealed its physiological functions. The K channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.
doi_str_mv 10.2169/internalmedicine.8454-16
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_28824061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28824061</sourcerecordid><originalsourceid>FETCH-LOGICAL-p158t-4ebac6379e522cd3588fdb113beb77fe4663c460e11611c8eca5b15b52e6e0e73</originalsourceid><addsrcrecordid>eNo1j8lOwzAUAC0kREvhF5B_wMXPe45VWUVZDuVcPTsvwih1o8Q98PcgAae5jWYY4yCXClxznUulsWC_pzanXGgZjDUC3AmbgzaN8ErbGTufpk8pdfCNOmMzFYIy0sGciSe-2r7x9QeWQj1_Plas-VAmjqXlL3QoWLHnNxkjVZou2GmH_USXf1yw97vb7fpBbF7vH9erjRjAhioMRUxO-4asUqnVNoSujQA6UvS-I-OcTsZJAnAAKVBCG8FGq8iRJK8X7OrXOxzjz9duGPMex6_df7f-BiyiRks</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>K ATP Channel Mutations and Neonatal Diabetes</title><source>PubMed Central</source><creator>Shimomura, Kenju ; Maejima, Yuko</creator><creatorcontrib>Shimomura, Kenju ; Maejima, Yuko</creatorcontrib><description>Since the discovery of the K channel in 1983, numerous studies have revealed its physiological functions. The K channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.</description><identifier>EISSN: 1349-7235</identifier><identifier>DOI: 10.2169/internalmedicine.8454-16</identifier><identifier>PMID: 28824061</identifier><language>eng</language><publisher>Japan</publisher><subject>Diabetes Mellitus - genetics ; Diabetes Mellitus - physiopathology ; Humans ; Infant, Newborn ; Insulin - metabolism ; Insulin Secretion ; Insulin-Secreting Cells - metabolism ; KATP Channels - genetics ; Mutation ; Sulfonylurea Receptors - genetics</subject><ispartof>Internal medicine (Tokyo, 1992), 2017-09, Vol.56 (18), p.2387</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28824061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimomura, Kenju</creatorcontrib><creatorcontrib>Maejima, Yuko</creatorcontrib><title>K ATP Channel Mutations and Neonatal Diabetes</title><title>Internal medicine (Tokyo, 1992)</title><addtitle>Intern Med</addtitle><description>Since the discovery of the K channel in 1983, numerous studies have revealed its physiological functions. The K channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.</description><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes Mellitus - physiopathology</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Insulin - metabolism</subject><subject>Insulin Secretion</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>KATP Channels - genetics</subject><subject>Mutation</subject><subject>Sulfonylurea Receptors - genetics</subject><issn>1349-7235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1j8lOwzAUAC0kREvhF5B_wMXPe45VWUVZDuVcPTsvwih1o8Q98PcgAae5jWYY4yCXClxznUulsWC_pzanXGgZjDUC3AmbgzaN8ErbGTufpk8pdfCNOmMzFYIy0sGciSe-2r7x9QeWQj1_Plas-VAmjqXlL3QoWLHnNxkjVZou2GmH_USXf1yw97vb7fpBbF7vH9erjRjAhioMRUxO-4asUqnVNoSujQA6UvS-I-OcTsZJAnAAKVBCG8FGq8iRJK8X7OrXOxzjz9duGPMex6_df7f-BiyiRks</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Shimomura, Kenju</creator><creator>Maejima, Yuko</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20170915</creationdate><title>K ATP Channel Mutations and Neonatal Diabetes</title><author>Shimomura, Kenju ; Maejima, Yuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p158t-4ebac6379e522cd3588fdb113beb77fe4663c460e11611c8eca5b15b52e6e0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes Mellitus - physiopathology</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Insulin - metabolism</topic><topic>Insulin Secretion</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>KATP Channels - genetics</topic><topic>Mutation</topic><topic>Sulfonylurea Receptors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimomura, Kenju</creatorcontrib><creatorcontrib>Maejima, Yuko</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Internal medicine (Tokyo, 1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimomura, Kenju</au><au>Maejima, Yuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K ATP Channel Mutations and Neonatal Diabetes</atitle><jtitle>Internal medicine (Tokyo, 1992)</jtitle><addtitle>Intern Med</addtitle><date>2017-09-15</date><risdate>2017</risdate><volume>56</volume><issue>18</issue><spage>2387</spage><pages>2387-</pages><eissn>1349-7235</eissn><abstract>Since the discovery of the K channel in 1983, numerous studies have revealed its physiological functions. The K channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.</abstract><cop>Japan</cop><pmid>28824061</pmid><doi>10.2169/internalmedicine.8454-16</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1349-7235
ispartof Internal medicine (Tokyo, 1992), 2017-09, Vol.56 (18), p.2387
issn 1349-7235
language eng
recordid cdi_pubmed_primary_28824061
source PubMed Central
subjects Diabetes Mellitus - genetics
Diabetes Mellitus - physiopathology
Humans
Infant, Newborn
Insulin - metabolism
Insulin Secretion
Insulin-Secreting Cells - metabolism
KATP Channels - genetics
Mutation
Sulfonylurea Receptors - genetics
title K ATP Channel Mutations and Neonatal Diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K%20ATP%20Channel%20Mutations%20and%20Neonatal%20Diabetes&rft.jtitle=Internal%20medicine%20(Tokyo,%201992)&rft.au=Shimomura,%20Kenju&rft.date=2017-09-15&rft.volume=56&rft.issue=18&rft.spage=2387&rft.pages=2387-&rft.eissn=1349-7235&rft_id=info:doi/10.2169/internalmedicine.8454-16&rft_dat=%3Cpubmed%3E28824061%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p158t-4ebac6379e522cd3588fdb113beb77fe4663c460e11611c8eca5b15b52e6e0e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28824061&rfr_iscdi=true