Loading…

Formation of spherical ice-shells inside carbon fullerenes

The structural and dynamic properties of encapsulated water inside fullerene cages, C 60 to C 320 , were investigated employing classical molecular dynamics simulations. We find that the confined water forms single to multiple concentric, spherical shells as the size of the fullerene increases. This...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (45), p.3726-3733
Main Authors: Tutchton, Roxanne M, Wu, Zhigang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53
cites cdi_FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53
container_end_page 3733
container_issue 45
container_start_page 3726
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Tutchton, Roxanne M
Wu, Zhigang
description The structural and dynamic properties of encapsulated water inside fullerene cages, C 60 to C 320 , were investigated employing classical molecular dynamics simulations. We find that the confined water forms single to multiple concentric, spherical shells as the size of the fullerene increases. This is possible due to the reduced number of hydrogen bonds per water molecule in the nanoscale liquid as compared to bulk water, allowing the encapsulated H 2 O molecules to imitate the shape of the confining boundary. These water-cluster shells exhibit solid-like behavior at temperatures as high as 500 K. Our current findings complement the existing literature on water confined by sp 2 -hybridized nanocarbon structures including one dimensional nanotubes and two dimensional graphene sheets. Water molecules confined inside fullerene cages form concentric shells, which are solid-like at room temperature.
doi_str_mv 10.1039/c7cp05987f
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29125155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1963275976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBREpqvXnpvcdNLKTiRrC-rt7J0m0CgPSRnIY9HrILXciT70H8fpZtuIYecJJiH0cwrQt4zesEoN5egYaLStNq_IcdMKF4b2oqD_V2rI3KS8z2llEnG35KjxrBGMimPybd1TFs3hzhW0Vd52mAK4IYqANZ5g8OQqzDm0GMFLnVF-WUYMOGI-YwcejdkfPd8npK79Y_b1VV98-vn9er7TQ3c0LluTefQ69a0rKGOc95oz1tjXN92TjeoAJQTEgUT2JT5KCihHHSqM6oXXvJTcr7rG_McbIYwI2wgjiPCbJkwjeasoC87NKX4sGCe7TZkKPO7EeOSLTOqPCyNVoV-fkHv45LGsoJtKKOt5FKLor7uFKSYc0JvpxS2Lv2xjNqn2O1Kr37_jX1d8Mfnlku3xX5P_-VcwIcdSBn21f__VuqfXqvbqff8EfMukDU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010853574</pqid></control><display><type>article</type><title>Formation of spherical ice-shells inside carbon fullerenes</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Tutchton, Roxanne M ; Wu, Zhigang</creator><creatorcontrib>Tutchton, Roxanne M ; Wu, Zhigang ; Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><description>The structural and dynamic properties of encapsulated water inside fullerene cages, C 60 to C 320 , were investigated employing classical molecular dynamics simulations. We find that the confined water forms single to multiple concentric, spherical shells as the size of the fullerene increases. This is possible due to the reduced number of hydrogen bonds per water molecule in the nanoscale liquid as compared to bulk water, allowing the encapsulated H 2 O molecules to imitate the shape of the confining boundary. These water-cluster shells exhibit solid-like behavior at temperatures as high as 500 K. Our current findings complement the existing literature on water confined by sp 2 -hybridized nanocarbon structures including one dimensional nanotubes and two dimensional graphene sheets. Water molecules confined inside fullerene cages form concentric shells, which are solid-like at room temperature.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp05987f</identifier><identifier>PMID: 29125155</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Buckminsterfullerene ; Cages ; Chemical bonds ; Confining ; Encapsulation ; Fullerenes ; Hydrogen bonds ; Ice formation ; Molecular dynamics ; Spherical shells</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017, Vol.19 (45), p.3726-3733</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53</citedby><cites>FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53</cites><orcidid>0000-0001-8521-3504 ; 0000-0001-8959-2345 ; 0000000185213504 ; 0000000189592345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29125155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1492731$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tutchton, Roxanne M</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><title>Formation of spherical ice-shells inside carbon fullerenes</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The structural and dynamic properties of encapsulated water inside fullerene cages, C 60 to C 320 , were investigated employing classical molecular dynamics simulations. We find that the confined water forms single to multiple concentric, spherical shells as the size of the fullerene increases. This is possible due to the reduced number of hydrogen bonds per water molecule in the nanoscale liquid as compared to bulk water, allowing the encapsulated H 2 O molecules to imitate the shape of the confining boundary. These water-cluster shells exhibit solid-like behavior at temperatures as high as 500 K. Our current findings complement the existing literature on water confined by sp 2 -hybridized nanocarbon structures including one dimensional nanotubes and two dimensional graphene sheets. Water molecules confined inside fullerene cages form concentric shells, which are solid-like at room temperature.</description><subject>Buckminsterfullerene</subject><subject>Cages</subject><subject>Chemical bonds</subject><subject>Confining</subject><subject>Encapsulation</subject><subject>Fullerenes</subject><subject>Hydrogen bonds</subject><subject>Ice formation</subject><subject>Molecular dynamics</subject><subject>Spherical shells</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90U1r3DAQBmBREpqvXnpvcdNLKTiRrC-rt7J0m0CgPSRnIY9HrILXciT70H8fpZtuIYecJJiH0cwrQt4zesEoN5egYaLStNq_IcdMKF4b2oqD_V2rI3KS8z2llEnG35KjxrBGMimPybd1TFs3hzhW0Vd52mAK4IYqANZ5g8OQqzDm0GMFLnVF-WUYMOGI-YwcejdkfPd8npK79Y_b1VV98-vn9er7TQ3c0LluTefQ69a0rKGOc95oz1tjXN92TjeoAJQTEgUT2JT5KCihHHSqM6oXXvJTcr7rG_McbIYwI2wgjiPCbJkwjeasoC87NKX4sGCe7TZkKPO7EeOSLTOqPCyNVoV-fkHv45LGsoJtKKOt5FKLor7uFKSYc0JvpxS2Lv2xjNqn2O1Kr37_jX1d8Mfnlku3xX5P_-VcwIcdSBn21f__VuqfXqvbqff8EfMukDU</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Tutchton, Roxanne M</creator><creator>Wu, Zhigang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8521-3504</orcidid><orcidid>https://orcid.org/0000-0001-8959-2345</orcidid><orcidid>https://orcid.org/0000000185213504</orcidid><orcidid>https://orcid.org/0000000189592345</orcidid></search><sort><creationdate>2017</creationdate><title>Formation of spherical ice-shells inside carbon fullerenes</title><author>Tutchton, Roxanne M ; Wu, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Buckminsterfullerene</topic><topic>Cages</topic><topic>Chemical bonds</topic><topic>Confining</topic><topic>Encapsulation</topic><topic>Fullerenes</topic><topic>Hydrogen bonds</topic><topic>Ice formation</topic><topic>Molecular dynamics</topic><topic>Spherical shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tutchton, Roxanne M</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tutchton, Roxanne M</au><au>Wu, Zhigang</au><aucorp>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of spherical ice-shells inside carbon fullerenes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>45</issue><spage>3726</spage><epage>3733</epage><pages>3726-3733</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The structural and dynamic properties of encapsulated water inside fullerene cages, C 60 to C 320 , were investigated employing classical molecular dynamics simulations. We find that the confined water forms single to multiple concentric, spherical shells as the size of the fullerene increases. This is possible due to the reduced number of hydrogen bonds per water molecule in the nanoscale liquid as compared to bulk water, allowing the encapsulated H 2 O molecules to imitate the shape of the confining boundary. These water-cluster shells exhibit solid-like behavior at temperatures as high as 500 K. Our current findings complement the existing literature on water confined by sp 2 -hybridized nanocarbon structures including one dimensional nanotubes and two dimensional graphene sheets. Water molecules confined inside fullerene cages form concentric shells, which are solid-like at room temperature.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29125155</pmid><doi>10.1039/c7cp05987f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8521-3504</orcidid><orcidid>https://orcid.org/0000-0001-8959-2345</orcidid><orcidid>https://orcid.org/0000000185213504</orcidid><orcidid>https://orcid.org/0000000189592345</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017, Vol.19 (45), p.3726-3733
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_29125155
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Buckminsterfullerene
Cages
Chemical bonds
Confining
Encapsulation
Fullerenes
Hydrogen bonds
Ice formation
Molecular dynamics
Spherical shells
title Formation of spherical ice-shells inside carbon fullerenes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20spherical%20ice-shells%20inside%20carbon%20fullerenes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Tutchton,%20Roxanne%20M&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory-National%20Energy%20Research%20Scientific%20Computing%20Center&rft.date=2017&rft.volume=19&rft.issue=45&rft.spage=3726&rft.epage=3733&rft.pages=3726-3733&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp05987f&rft_dat=%3Cproquest_pubme%3E1963275976%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-89baef7898120a33327f3899ad8ba72e6cc6a45e414e21510c646acb6b96d4f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2010853574&rft_id=info:pmid/29125155&rfr_iscdi=true