Loading…

Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of ne...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2017-11, Vol.27 (11), p.114323-114323
Main Authors: Romeira, Bruno, Figueiredo, José M. L., Javaloyes, Julien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3
cites cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3
container_end_page 114323
container_issue 11
container_start_page 114323
container_title Chaos (Woodbury, N.Y.)
container_volume 27
creator Romeira, Bruno
Figueiredo, José M. L.
Javaloyes, Julien
description With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.
doi_str_mv 10.1063/1.5008888
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29195310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116004062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiveFLyAFNypUc5K2adyJdxB0oeuQ5oKVNqlJK8zbm3FGBUGzSU7y8RN-hPYAnwCu6CmclBjXaa2gTcA1z1lVk9X5uSxySG8baCvGV4wxEFquow3CgZcU8CaSl6aTs0zPnOxbFTNvM2em4HsfhpdWZX4YvemMGoN3aXTS-ahkZ7Jgondy9CGeZY8mxCGZ9t3ETDqdyWHoWiXH1ru4g9as7KLZXe7b6Pn66uniNr9_uLm7OL_PVQH1mFtdGKsNKVjDSEWkkpooQpnlmgBjjeY1pZWtS2U5rqCY31a0sU1ja1Y3lm6jw0XuEPzbZOIo-jYq03XSGT9FAZwBw8ALnujBL_rqp-DS7wQBqDAucEWSOlooFXyMwVgxhLaXYSYAi3nvAsSy92T3l4lT0xv9Lb-KTuB4AaJqx89i_k37E7_78APFoC39AO0Vmp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116004062</pqid></control><display><type>article</type><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</creator><creatorcontrib>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</creatorcontrib><description>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5008888</identifier><identifier>PMID: 29195310</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial intelligence ; Brain ; Delay ; Diodes ; Dynamic characteristics ; Neural networks ; Optoelectronic devices ; Oscillators ; Photonics ; Quantum wells ; Reconfiguration ; Regeneration ; Resonant tunneling ; Semiconductors ; Solid state ; State-of-the-art reviews</subject><ispartof>Chaos (Woodbury, N.Y.), 2017-11, Vol.27 (11), p.114323-114323</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</citedby><cites>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</cites><orcidid>0000-0001-5668-7073 ; 0000-0001-9131-4483 ; 0000-0002-1485-6665 ; 0000000214856665 ; 0000000191314483 ; 0000000156687073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29195310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romeira, Bruno</creatorcontrib><creatorcontrib>Figueiredo, José M. L.</creatorcontrib><creatorcontrib>Javaloyes, Julien</creatorcontrib><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</description><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Delay</subject><subject>Diodes</subject><subject>Dynamic characteristics</subject><subject>Neural networks</subject><subject>Optoelectronic devices</subject><subject>Oscillators</subject><subject>Photonics</subject><subject>Quantum wells</subject><subject>Reconfiguration</subject><subject>Regeneration</subject><subject>Resonant tunneling</subject><subject>Semiconductors</subject><subject>Solid state</subject><subject>State-of-the-art reviews</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90MtKxDAUBuAgiveFLyAFNypUc5K2adyJdxB0oeuQ5oKVNqlJK8zbm3FGBUGzSU7y8RN-hPYAnwCu6CmclBjXaa2gTcA1z1lVk9X5uSxySG8baCvGV4wxEFquow3CgZcU8CaSl6aTs0zPnOxbFTNvM2em4HsfhpdWZX4YvemMGoN3aXTS-ahkZ7Jgondy9CGeZY8mxCGZ9t3ETDqdyWHoWiXH1ru4g9as7KLZXe7b6Pn66uniNr9_uLm7OL_PVQH1mFtdGKsNKVjDSEWkkpooQpnlmgBjjeY1pZWtS2U5rqCY31a0sU1ja1Y3lm6jw0XuEPzbZOIo-jYq03XSGT9FAZwBw8ALnujBL_rqp-DS7wQBqDAucEWSOlooFXyMwVgxhLaXYSYAi3nvAsSy92T3l4lT0xv9Lb-KTuB4AaJqx89i_k37E7_78APFoC39AO0Vmp4</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Romeira, Bruno</creator><creator>Figueiredo, José M. L.</creator><creator>Javaloyes, Julien</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5668-7073</orcidid><orcidid>https://orcid.org/0000-0001-9131-4483</orcidid><orcidid>https://orcid.org/0000-0002-1485-6665</orcidid><orcidid>https://orcid.org/0000000214856665</orcidid><orcidid>https://orcid.org/0000000191314483</orcidid><orcidid>https://orcid.org/0000000156687073</orcidid></search><sort><creationdate>201711</creationdate><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><author>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Delay</topic><topic>Diodes</topic><topic>Dynamic characteristics</topic><topic>Neural networks</topic><topic>Optoelectronic devices</topic><topic>Oscillators</topic><topic>Photonics</topic><topic>Quantum wells</topic><topic>Reconfiguration</topic><topic>Regeneration</topic><topic>Resonant tunneling</topic><topic>Semiconductors</topic><topic>Solid state</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romeira, Bruno</creatorcontrib><creatorcontrib>Figueiredo, José M. L.</creatorcontrib><creatorcontrib>Javaloyes, Julien</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romeira, Bruno</au><au>Figueiredo, José M. L.</au><au>Javaloyes, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2017-11</date><risdate>2017</risdate><volume>27</volume><issue>11</issue><spage>114323</spage><epage>114323</epage><pages>114323-114323</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29195310</pmid><doi>10.1063/1.5008888</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5668-7073</orcidid><orcidid>https://orcid.org/0000-0001-9131-4483</orcidid><orcidid>https://orcid.org/0000-0002-1485-6665</orcidid><orcidid>https://orcid.org/0000000214856665</orcidid><orcidid>https://orcid.org/0000000191314483</orcidid><orcidid>https://orcid.org/0000000156687073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2017-11, Vol.27 (11), p.114323-114323
issn 1054-1500
1089-7682
language eng
recordid cdi_pubmed_primary_29195310
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Artificial intelligence
Brain
Delay
Diodes
Dynamic characteristics
Neural networks
Optoelectronic devices
Oscillators
Photonics
Quantum wells
Reconfiguration
Regeneration
Resonant tunneling
Semiconductors
Solid state
State-of-the-art reviews
title Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%20dynamics%20of%20neuromorphic%20optoelectronic%20nanoscale%20resonators:%20Perspectives%20and%20applications&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Romeira,%20Bruno&rft.date=2017-11&rft.volume=27&rft.issue=11&rft.spage=114323&rft.epage=114323&rft.pages=114323-114323&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5008888&rft_dat=%3Cproquest_pubme%3E2116004062%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116004062&rft_id=info:pmid/29195310&rfr_iscdi=true