Loading…
Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications
With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of ne...
Saved in:
Published in: | Chaos (Woodbury, N.Y.) N.Y.), 2017-11, Vol.27 (11), p.114323-114323 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3 |
container_end_page | 114323 |
container_issue | 11 |
container_start_page | 114323 |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 27 |
creator | Romeira, Bruno Figueiredo, José M. L. Javaloyes, Julien |
description | With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing. |
doi_str_mv | 10.1063/1.5008888 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29195310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116004062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgiveFLyAFNypUc5K2adyJdxB0oeuQ5oKVNqlJK8zbm3FGBUGzSU7y8RN-hPYAnwCu6CmclBjXaa2gTcA1z1lVk9X5uSxySG8baCvGV4wxEFquow3CgZcU8CaSl6aTs0zPnOxbFTNvM2em4HsfhpdWZX4YvemMGoN3aXTS-ahkZ7Jgondy9CGeZY8mxCGZ9t3ETDqdyWHoWiXH1ru4g9as7KLZXe7b6Pn66uniNr9_uLm7OL_PVQH1mFtdGKsNKVjDSEWkkpooQpnlmgBjjeY1pZWtS2U5rqCY31a0sU1ja1Y3lm6jw0XuEPzbZOIo-jYq03XSGT9FAZwBw8ALnujBL_rqp-DS7wQBqDAucEWSOlooFXyMwVgxhLaXYSYAi3nvAsSy92T3l4lT0xv9Lb-KTuB4AaJqx89i_k37E7_78APFoC39AO0Vmp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116004062</pqid></control><display><type>article</type><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</creator><creatorcontrib>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</creatorcontrib><description>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/1.5008888</identifier><identifier>PMID: 29195310</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Artificial intelligence ; Brain ; Delay ; Diodes ; Dynamic characteristics ; Neural networks ; Optoelectronic devices ; Oscillators ; Photonics ; Quantum wells ; Reconfiguration ; Regeneration ; Resonant tunneling ; Semiconductors ; Solid state ; State-of-the-art reviews</subject><ispartof>Chaos (Woodbury, N.Y.), 2017-11, Vol.27 (11), p.114323-114323</ispartof><rights>Author(s)</rights><rights>2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</citedby><cites>FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</cites><orcidid>0000-0001-5668-7073 ; 0000-0001-9131-4483 ; 0000-0002-1485-6665 ; 0000000214856665 ; 0000000191314483 ; 0000000156687073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29195310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romeira, Bruno</creatorcontrib><creatorcontrib>Figueiredo, José M. L.</creatorcontrib><creatorcontrib>Javaloyes, Julien</creatorcontrib><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</description><subject>Artificial intelligence</subject><subject>Brain</subject><subject>Delay</subject><subject>Diodes</subject><subject>Dynamic characteristics</subject><subject>Neural networks</subject><subject>Optoelectronic devices</subject><subject>Oscillators</subject><subject>Photonics</subject><subject>Quantum wells</subject><subject>Reconfiguration</subject><subject>Regeneration</subject><subject>Resonant tunneling</subject><subject>Semiconductors</subject><subject>Solid state</subject><subject>State-of-the-art reviews</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90MtKxDAUBuAgiveFLyAFNypUc5K2adyJdxB0oeuQ5oKVNqlJK8zbm3FGBUGzSU7y8RN-hPYAnwCu6CmclBjXaa2gTcA1z1lVk9X5uSxySG8baCvGV4wxEFquow3CgZcU8CaSl6aTs0zPnOxbFTNvM2em4HsfhpdWZX4YvemMGoN3aXTS-ahkZ7Jgondy9CGeZY8mxCGZ9t3ETDqdyWHoWiXH1ru4g9as7KLZXe7b6Pn66uniNr9_uLm7OL_PVQH1mFtdGKsNKVjDSEWkkpooQpnlmgBjjeY1pZWtS2U5rqCY31a0sU1ja1Y3lm6jw0XuEPzbZOIo-jYq03XSGT9FAZwBw8ALnujBL_rqp-DS7wQBqDAucEWSOlooFXyMwVgxhLaXYSYAi3nvAsSy92T3l4lT0xv9Lb-KTuB4AaJqx89i_k37E7_78APFoC39AO0Vmp4</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Romeira, Bruno</creator><creator>Figueiredo, José M. L.</creator><creator>Javaloyes, Julien</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5668-7073</orcidid><orcidid>https://orcid.org/0000-0001-9131-4483</orcidid><orcidid>https://orcid.org/0000-0002-1485-6665</orcidid><orcidid>https://orcid.org/0000000214856665</orcidid><orcidid>https://orcid.org/0000000191314483</orcidid><orcidid>https://orcid.org/0000000156687073</orcidid></search><sort><creationdate>201711</creationdate><title>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</title><author>Romeira, Bruno ; Figueiredo, José M. L. ; Javaloyes, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Brain</topic><topic>Delay</topic><topic>Diodes</topic><topic>Dynamic characteristics</topic><topic>Neural networks</topic><topic>Optoelectronic devices</topic><topic>Oscillators</topic><topic>Photonics</topic><topic>Quantum wells</topic><topic>Reconfiguration</topic><topic>Regeneration</topic><topic>Resonant tunneling</topic><topic>Semiconductors</topic><topic>Solid state</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romeira, Bruno</creatorcontrib><creatorcontrib>Figueiredo, José M. L.</creatorcontrib><creatorcontrib>Javaloyes, Julien</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romeira, Bruno</au><au>Figueiredo, José M. L.</au><au>Javaloyes, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2017-11</date><risdate>2017</risdate><volume>27</volume><issue>11</issue><spage>114323</spage><epage>114323</epage><pages>114323-114323</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29195310</pmid><doi>10.1063/1.5008888</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5668-7073</orcidid><orcidid>https://orcid.org/0000-0001-9131-4483</orcidid><orcidid>https://orcid.org/0000-0002-1485-6665</orcidid><orcidid>https://orcid.org/0000000214856665</orcidid><orcidid>https://orcid.org/0000000191314483</orcidid><orcidid>https://orcid.org/0000000156687073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2017-11, Vol.27 (11), p.114323-114323 |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_pubmed_primary_29195310 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Artificial intelligence Brain Delay Diodes Dynamic characteristics Neural networks Optoelectronic devices Oscillators Photonics Quantum wells Reconfiguration Regeneration Resonant tunneling Semiconductors Solid state State-of-the-art reviews |
title | Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%20dynamics%20of%20neuromorphic%20optoelectronic%20nanoscale%20resonators:%20Perspectives%20and%20applications&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Romeira,%20Bruno&rft.date=2017-11&rft.volume=27&rft.issue=11&rft.spage=114323&rft.epage=114323&rft.pages=114323-114323&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/1.5008888&rft_dat=%3Cproquest_pubme%3E2116004062%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-fd4efde247b7262acad2c237f9d2177bd98336f85cf90614d21763bfbbf878bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116004062&rft_id=info:pmid/29195310&rfr_iscdi=true |