Loading…
XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal
The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2018-01, Vol.2 (3), p.1984-1992 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CN H-O- hydrogen bond length along the
a
and
b
axes of the crystal. In turn, the so-calculated -CN H-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.
The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by X-rays diffraction and infrared spectroscopy in the range 120-300 K. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c7cp05209j |