Loading…

Thermal properties of graphene from path-integral simulations

Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures i...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2018-03, Vol.148 (10), p.102302-102302
Main Authors: Herrero, Carlos P., Ramírez, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343
cites cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343
container_end_page 102302
container_issue 10
container_start_page 102302
container_title The Journal of chemical physics
container_volume 148
creator Herrero, Carlos P.
Ramírez, Rafael
description Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient α p of the in-plane area, which is negative at low temperatures and becomes positive for T   ≳   1000 K.
doi_str_mv 10.1063/1.4997178
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29544269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116072331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EglIY-AMoEgsgpdzFrh0PDKjiS6rE0t1ynAtNlS_sZODfk9LCwMB00um5V-89jF0gzBAkv8OZ0FqhSg_YBCHVsZIaDtkEIMFYS5An7DSEDQCgSsQxO0n0XIhE6gm7X63J17aKOt925PuSQtQW0bu33Zoaigrf1lFn-3VcNj2N6yoKZT1Uti_bJpyxo8JWgc73c8pWT4-rxUu8fHt-XTwsYyeE7uO0UFzIDAgdwBwtT8hZoUBqypHzTKeCpJpnBc8c5TbLJUeXS8iFpfGST9n1LnYs-TFQ6E1dBkdVZRtqh2ASQKHF9ukRvfqDbtrBN2M5kyBKUAnnOFI3O8r5NgRPhel8WVv_aRDMVqlBs1c6spf7xCGrKf8lfxyOwO0OCK7sv738k_YFQVN9IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116072331</pqid></control><display><type>article</type><title>Thermal properties of graphene from path-integral simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Herrero, Carlos P. ; Ramírez, Rafael</creator><creatorcontrib>Herrero, Carlos P. ; Ramírez, Rafael</creatorcontrib><description>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient α p of the in-plane area, which is negative at low temperatures and becomes positive for T   ≳   1000 K.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4997178</identifier><identifier>PMID: 29544269</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Approximation ; Graphene ; Integrals ; Internal energy ; Mathematical analysis ; Molecular dynamics ; Physics ; Simulation ; Temperature effects ; Thermal expansion ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2018-03, Vol.148 (10), p.102302-102302</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</citedby><cites>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4997178$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29544269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrero, Carlos P.</creatorcontrib><creatorcontrib>Ramírez, Rafael</creatorcontrib><title>Thermal properties of graphene from path-integral simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient α p of the in-plane area, which is negative at low temperatures and becomes positive for T   ≳   1000 K.</description><subject>Anharmonicity</subject><subject>Approximation</subject><subject>Graphene</subject><subject>Integrals</subject><subject>Internal energy</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Simulation</subject><subject>Temperature effects</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EglIY-AMoEgsgpdzFrh0PDKjiS6rE0t1ynAtNlS_sZODfk9LCwMB00um5V-89jF0gzBAkv8OZ0FqhSg_YBCHVsZIaDtkEIMFYS5An7DSEDQCgSsQxO0n0XIhE6gm7X63J17aKOt925PuSQtQW0bu33Zoaigrf1lFn-3VcNj2N6yoKZT1Uti_bJpyxo8JWgc73c8pWT4-rxUu8fHt-XTwsYyeE7uO0UFzIDAgdwBwtT8hZoUBqypHzTKeCpJpnBc8c5TbLJUeXS8iFpfGST9n1LnYs-TFQ6E1dBkdVZRtqh2ASQKHF9ukRvfqDbtrBN2M5kyBKUAnnOFI3O8r5NgRPhel8WVv_aRDMVqlBs1c6spf7xCGrKf8lfxyOwO0OCK7sv738k_YFQVN9IQ</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Herrero, Carlos P.</creator><creator>Ramírez, Rafael</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180314</creationdate><title>Thermal properties of graphene from path-integral simulations</title><author>Herrero, Carlos P. ; Ramírez, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Approximation</topic><topic>Graphene</topic><topic>Integrals</topic><topic>Internal energy</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Simulation</topic><topic>Temperature effects</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrero, Carlos P.</creatorcontrib><creatorcontrib>Ramírez, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrero, Carlos P.</au><au>Ramírez, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of graphene from path-integral simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>148</volume><issue>10</issue><spage>102302</spage><epage>102302</epage><pages>102302-102302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient α of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient α p of the in-plane area, which is negative at low temperatures and becomes positive for T   ≳   1000 K.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29544269</pmid><doi>10.1063/1.4997178</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2018-03, Vol.148 (10), p.102302-102302
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_29544269
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Anharmonicity
Approximation
Graphene
Integrals
Internal energy
Mathematical analysis
Molecular dynamics
Physics
Simulation
Temperature effects
Thermal expansion
Thermodynamic properties
title Thermal properties of graphene from path-integral simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20graphene%20from%20path-integral%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Herrero,%20Carlos%20P.&rft.date=2018-03-14&rft.volume=148&rft.issue=10&rft.spage=102302&rft.epage=102302&rft.pages=102302-102302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4997178&rft_dat=%3Cproquest_pubme%3E2116072331%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116072331&rft_id=info:pmid/29544269&rfr_iscdi=true