Loading…
Thermal properties of graphene from path-integral simulations
Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures i...
Saved in:
Published in: | The Journal of chemical physics 2018-03, Vol.148 (10), p.102302-102302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343 |
container_end_page | 102302 |
container_issue | 10 |
container_start_page | 102302 |
container_title | The Journal of chemical physics |
container_volume | 148 |
creator | Herrero, Carlos P. Ramírez, Rafael |
description | Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient
α
of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient
α
p
of the in-plane area, which is negative at low temperatures and becomes positive for
T
≳
1000 K. |
doi_str_mv | 10.1063/1.4997178 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29544269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116072331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EglIY-AMoEgsgpdzFrh0PDKjiS6rE0t1ynAtNlS_sZODfk9LCwMB00um5V-89jF0gzBAkv8OZ0FqhSg_YBCHVsZIaDtkEIMFYS5An7DSEDQCgSsQxO0n0XIhE6gm7X63J17aKOt925PuSQtQW0bu33Zoaigrf1lFn-3VcNj2N6yoKZT1Uti_bJpyxo8JWgc73c8pWT4-rxUu8fHt-XTwsYyeE7uO0UFzIDAgdwBwtT8hZoUBqypHzTKeCpJpnBc8c5TbLJUeXS8iFpfGST9n1LnYs-TFQ6E1dBkdVZRtqh2ASQKHF9ukRvfqDbtrBN2M5kyBKUAnnOFI3O8r5NgRPhel8WVv_aRDMVqlBs1c6spf7xCGrKf8lfxyOwO0OCK7sv738k_YFQVN9IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116072331</pqid></control><display><type>article</type><title>Thermal properties of graphene from path-integral simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Herrero, Carlos P. ; Ramírez, Rafael</creator><creatorcontrib>Herrero, Carlos P. ; Ramírez, Rafael</creatorcontrib><description>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient
α
of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient
α
p
of the in-plane area, which is negative at low temperatures and becomes positive for
T
≳
1000 K.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4997178</identifier><identifier>PMID: 29544269</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Approximation ; Graphene ; Integrals ; Internal energy ; Mathematical analysis ; Molecular dynamics ; Physics ; Simulation ; Temperature effects ; Thermal expansion ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2018-03, Vol.148 (10), p.102302-102302</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</citedby><cites>FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4997178$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29544269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrero, Carlos P.</creatorcontrib><creatorcontrib>Ramírez, Rafael</creatorcontrib><title>Thermal properties of graphene from path-integral simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient
α
of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient
α
p
of the in-plane area, which is negative at low temperatures and becomes positive for
T
≳
1000 K.</description><subject>Anharmonicity</subject><subject>Approximation</subject><subject>Graphene</subject><subject>Integrals</subject><subject>Internal energy</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Simulation</subject><subject>Temperature effects</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EglIY-AMoEgsgpdzFrh0PDKjiS6rE0t1ynAtNlS_sZODfk9LCwMB00um5V-89jF0gzBAkv8OZ0FqhSg_YBCHVsZIaDtkEIMFYS5An7DSEDQCgSsQxO0n0XIhE6gm7X63J17aKOt925PuSQtQW0bu33Zoaigrf1lFn-3VcNj2N6yoKZT1Uti_bJpyxo8JWgc73c8pWT4-rxUu8fHt-XTwsYyeE7uO0UFzIDAgdwBwtT8hZoUBqypHzTKeCpJpnBc8c5TbLJUeXS8iFpfGST9n1LnYs-TFQ6E1dBkdVZRtqh2ASQKHF9ukRvfqDbtrBN2M5kyBKUAnnOFI3O8r5NgRPhel8WVv_aRDMVqlBs1c6spf7xCGrKf8lfxyOwO0OCK7sv738k_YFQVN9IQ</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Herrero, Carlos P.</creator><creator>Ramírez, Rafael</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180314</creationdate><title>Thermal properties of graphene from path-integral simulations</title><author>Herrero, Carlos P. ; Ramírez, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anharmonicity</topic><topic>Approximation</topic><topic>Graphene</topic><topic>Integrals</topic><topic>Internal energy</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Simulation</topic><topic>Temperature effects</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrero, Carlos P.</creatorcontrib><creatorcontrib>Ramírez, Rafael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrero, Carlos P.</au><au>Ramírez, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of graphene from path-integral simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>148</volume><issue>10</issue><spage>102302</spage><epage>102302</epage><pages>102302-102302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Thermal properties of graphene monolayers are studied by path-integral molecular dynamics simulations, which take into account the quantization of vibrational modes in the crystalline membrane and allow one to consider anharmonic effects in these properties. This system was studied at temperatures in the range from 12 to 2000 K and zero external stress, by describing the interatomic interactions through the LCBOPII effective potential. We analyze the internal energy and specific heat and compare the results derived from the simulations with those yielded by a harmonic approximation for the vibrational modes. This approximation turns out to be rather precise up to temperatures of about 400 K. At higher temperatures, we observe an influence of the elastic energy due to the thermal expansion of the graphene sheet. Zero-point and thermal effects on the in-plane and “real” surface of graphene are discussed. The thermal expansion coefficient
α
of the real area is found to be positive at all temperatures, in contrast to the expansion coefficient
α
p
of the in-plane area, which is negative at low temperatures and becomes positive for
T
≳
1000 K.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>29544269</pmid><doi>10.1063/1.4997178</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-03, Vol.148 (10), p.102302-102302 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_29544269 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Anharmonicity Approximation Graphene Integrals Internal energy Mathematical analysis Molecular dynamics Physics Simulation Temperature effects Thermal expansion Thermodynamic properties |
title | Thermal properties of graphene from path-integral simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20graphene%20from%20path-integral%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Herrero,%20Carlos%20P.&rft.date=2018-03-14&rft.volume=148&rft.issue=10&rft.spage=102302&rft.epage=102302&rft.pages=102302-102302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4997178&rft_dat=%3Cproquest_pubme%3E2116072331%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-8f7346b0e1c0051a32eca47069ed133b984e675bf3bcedabd631cd60d4ae7343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116072331&rft_id=info:pmid/29544269&rfr_iscdi=true |