Loading…

Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations

Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, F NMR is used to delineate the effects of cations on functional states of the adenosine A GPCR. While Na reinforces an inactive ensemble and a partial-agonist stabilized s...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-04, Vol.9 (1), p.1372
Main Authors: Ye, Libin, Neale, Chris, Sljoka, Adnan, Lyda, Brent, Pichugin, Dmitry, Tsuchimura, Nobuyuki, Larda, Sacha T, Pomès, Régis, García, Angel E, Ernst, Oliver P, Sunahara, Roger K, Prosser, R Scott
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 1372
container_title Nature communications
container_volume 9
creator Ye, Libin
Neale, Chris
Sljoka, Adnan
Lyda, Brent
Pichugin, Dmitry
Tsuchimura, Nobuyuki
Larda, Sacha T
Pomès, Régis
García, Angel E
Ernst, Oliver P
Sunahara, Roger K
Prosser, R Scott
description Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, F NMR is used to delineate the effects of cations on functional states of the adenosine A GPCR. While Na reinforces an inactive ensemble and a partial-agonist stabilized state, Ca and Mg shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_29636462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29636462</sourcerecordid><originalsourceid>FETCH-pubmed_primary_296364623</originalsourceid><addsrcrecordid>eNqFTk2rwjAQDIKoqH9B9g8UbFqqHkX0vYs375Kma7sSsyGbHvrvLQ89v7nMwHwwE7XQ2zLP8p0u5mot8tyOKA75vixnaq4PVVGVlV6o4Yq2M54kkQXyQm2XZBSJwTjHkjCORsS2dyYRe-AHpA7hCPoIpkHPQh7hB0LkhOQzy31w2IwViyFxhHqA0A1C7LglaxzYvyFZqenDOMH1h5dqcznfTr9Z6OsXNvcQ6WXicP9-Lf4NvAGKZ0yu</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations</title><source>Nature</source><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ye, Libin ; Neale, Chris ; Sljoka, Adnan ; Lyda, Brent ; Pichugin, Dmitry ; Tsuchimura, Nobuyuki ; Larda, Sacha T ; Pomès, Régis ; García, Angel E ; Ernst, Oliver P ; Sunahara, Roger K ; Prosser, R Scott</creator><creatorcontrib>Ye, Libin ; Neale, Chris ; Sljoka, Adnan ; Lyda, Brent ; Pichugin, Dmitry ; Tsuchimura, Nobuyuki ; Larda, Sacha T ; Pomès, Régis ; García, Angel E ; Ernst, Oliver P ; Sunahara, Roger K ; Prosser, R Scott</creatorcontrib><description>Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, F NMR is used to delineate the effects of cations on functional states of the adenosine A GPCR. While Na reinforces an inactive ensemble and a partial-agonist stabilized state, Ca and Mg shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.</description><identifier>EISSN: 2041-1723</identifier><identifier>PMID: 29636462</identifier><language>eng</language><publisher>England</publisher><subject>Adenosine - chemistry ; Adenosine - metabolism ; Adenosine-5'-(N-ethylcarboxamide) - chemistry ; Adenosine-5'-(N-ethylcarboxamide) - metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Animals ; Binding Sites ; Calcium - chemistry ; Calcium - metabolism ; Cations, Divalent ; Crystallography, X-Ray ; Gene Expression ; Humans ; Kinetics ; Magnesium - chemistry ; Magnesium - metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Receptor, Adenosine A2A - chemistry ; Receptor, Adenosine A2A - genetics ; Receptor, Adenosine A2A - metabolism ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sf9 Cells ; Spodoptera ; Thermodynamics ; Triazines - chemistry ; Triazines - metabolism ; Triazoles - chemistry ; Triazoles - metabolism</subject><ispartof>Nature communications, 2018-04, Vol.9 (1), p.1372</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3068-9833 ; 0000-0003-1702-8619 ; 0000-0002-8863-9444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29636462$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Libin</creatorcontrib><creatorcontrib>Neale, Chris</creatorcontrib><creatorcontrib>Sljoka, Adnan</creatorcontrib><creatorcontrib>Lyda, Brent</creatorcontrib><creatorcontrib>Pichugin, Dmitry</creatorcontrib><creatorcontrib>Tsuchimura, Nobuyuki</creatorcontrib><creatorcontrib>Larda, Sacha T</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>García, Angel E</creatorcontrib><creatorcontrib>Ernst, Oliver P</creatorcontrib><creatorcontrib>Sunahara, Roger K</creatorcontrib><creatorcontrib>Prosser, R Scott</creatorcontrib><title>Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, F NMR is used to delineate the effects of cations on functional states of the adenosine A GPCR. While Na reinforces an inactive ensemble and a partial-agonist stabilized state, Ca and Mg shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.</description><subject>Adenosine - chemistry</subject><subject>Adenosine - metabolism</subject><subject>Adenosine-5'-(N-ethylcarboxamide) - chemistry</subject><subject>Adenosine-5'-(N-ethylcarboxamide) - metabolism</subject><subject>Allosteric Regulation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Calcium - chemistry</subject><subject>Calcium - metabolism</subject><subject>Cations, Divalent</subject><subject>Crystallography, X-Ray</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Receptor, Adenosine A2A - chemistry</subject><subject>Receptor, Adenosine A2A - genetics</subject><subject>Receptor, Adenosine A2A - metabolism</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sf9 Cells</subject><subject>Spodoptera</subject><subject>Thermodynamics</subject><subject>Triazines - chemistry</subject><subject>Triazines - metabolism</subject><subject>Triazoles - chemistry</subject><subject>Triazoles - metabolism</subject><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFTk2rwjAQDIKoqH9B9g8UbFqqHkX0vYs375Kma7sSsyGbHvrvLQ89v7nMwHwwE7XQ2zLP8p0u5mot8tyOKA75vixnaq4PVVGVlV6o4Yq2M54kkQXyQm2XZBSJwTjHkjCORsS2dyYRe-AHpA7hCPoIpkHPQh7hB0LkhOQzy31w2IwViyFxhHqA0A1C7LglaxzYvyFZqenDOMH1h5dqcznfTr9Z6OsXNvcQ6WXicP9-Lf4NvAGKZ0yu</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Ye, Libin</creator><creator>Neale, Chris</creator><creator>Sljoka, Adnan</creator><creator>Lyda, Brent</creator><creator>Pichugin, Dmitry</creator><creator>Tsuchimura, Nobuyuki</creator><creator>Larda, Sacha T</creator><creator>Pomès, Régis</creator><creator>García, Angel E</creator><creator>Ernst, Oliver P</creator><creator>Sunahara, Roger K</creator><creator>Prosser, R Scott</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><orcidid>https://orcid.org/0000-0003-3068-9833</orcidid><orcidid>https://orcid.org/0000-0003-1702-8619</orcidid><orcidid>https://orcid.org/0000-0002-8863-9444</orcidid></search><sort><creationdate>20180410</creationdate><title>Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations</title><author>Ye, Libin ; Neale, Chris ; Sljoka, Adnan ; Lyda, Brent ; Pichugin, Dmitry ; Tsuchimura, Nobuyuki ; Larda, Sacha T ; Pomès, Régis ; García, Angel E ; Ernst, Oliver P ; Sunahara, Roger K ; Prosser, R Scott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_296364623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine - chemistry</topic><topic>Adenosine - metabolism</topic><topic>Adenosine-5'-(N-ethylcarboxamide) - chemistry</topic><topic>Adenosine-5'-(N-ethylcarboxamide) - metabolism</topic><topic>Allosteric Regulation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Calcium - chemistry</topic><topic>Calcium - metabolism</topic><topic>Cations, Divalent</topic><topic>Crystallography, X-Ray</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Receptor, Adenosine A2A - chemistry</topic><topic>Receptor, Adenosine A2A - genetics</topic><topic>Receptor, Adenosine A2A - metabolism</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sf9 Cells</topic><topic>Spodoptera</topic><topic>Thermodynamics</topic><topic>Triazines - chemistry</topic><topic>Triazines - metabolism</topic><topic>Triazoles - chemistry</topic><topic>Triazoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Libin</creatorcontrib><creatorcontrib>Neale, Chris</creatorcontrib><creatorcontrib>Sljoka, Adnan</creatorcontrib><creatorcontrib>Lyda, Brent</creatorcontrib><creatorcontrib>Pichugin, Dmitry</creatorcontrib><creatorcontrib>Tsuchimura, Nobuyuki</creatorcontrib><creatorcontrib>Larda, Sacha T</creatorcontrib><creatorcontrib>Pomès, Régis</creatorcontrib><creatorcontrib>García, Angel E</creatorcontrib><creatorcontrib>Ernst, Oliver P</creatorcontrib><creatorcontrib>Sunahara, Roger K</creatorcontrib><creatorcontrib>Prosser, R Scott</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Libin</au><au>Neale, Chris</au><au>Sljoka, Adnan</au><au>Lyda, Brent</au><au>Pichugin, Dmitry</au><au>Tsuchimura, Nobuyuki</au><au>Larda, Sacha T</au><au>Pomès, Régis</au><au>García, Angel E</au><au>Ernst, Oliver P</au><au>Sunahara, Roger K</au><au>Prosser, R Scott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations</atitle><jtitle>Nature communications</jtitle><addtitle>Nat Commun</addtitle><date>2018-04-10</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>1372</spage><pages>1372-</pages><eissn>2041-1723</eissn><abstract>Cations play key roles in regulating G-protein-coupled receptors (GPCRs), although their mechanisms are poorly understood. Here, F NMR is used to delineate the effects of cations on functional states of the adenosine A GPCR. While Na reinforces an inactive ensemble and a partial-agonist stabilized state, Ca and Mg shift the equilibrium toward active states. Positive allosteric effects of divalent cations are more pronounced with agonist and a G-protein-derived peptide. In cell membranes, divalent cations enhance both the affinity and fraction of the high affinity agonist-bound state. Molecular dynamics simulations suggest high concentrations of divalent cations bridge specific extracellular acidic residues, bringing TM5 and TM6 together at the extracellular surface and allosterically driving open the G-protein-binding cleft as shown by rigidity-transmission allostery theory. An understanding of cation allostery should enable the design of allosteric agents and enhance our understanding of GPCR regulation in the cellular milieu.</abstract><cop>England</cop><pmid>29636462</pmid><orcidid>https://orcid.org/0000-0003-3068-9833</orcidid><orcidid>https://orcid.org/0000-0003-1702-8619</orcidid><orcidid>https://orcid.org/0000-0002-8863-9444</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2041-1723
ispartof Nature communications, 2018-04, Vol.9 (1), p.1372
issn 2041-1723
language eng
recordid cdi_pubmed_primary_29636462
source Nature; ProQuest - Publicly Available Content Database; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects Adenosine - chemistry
Adenosine - metabolism
Adenosine-5'-(N-ethylcarboxamide) - chemistry
Adenosine-5'-(N-ethylcarboxamide) - metabolism
Allosteric Regulation
Amino Acid Sequence
Animals
Binding Sites
Calcium - chemistry
Calcium - metabolism
Cations, Divalent
Crystallography, X-Ray
Gene Expression
Humans
Kinetics
Magnesium - chemistry
Magnesium - metabolism
Models, Molecular
Molecular Dynamics Simulation
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Receptor, Adenosine A2A - chemistry
Receptor, Adenosine A2A - genetics
Receptor, Adenosine A2A - metabolism
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sf9 Cells
Spodoptera
Thermodynamics
Triazines - chemistry
Triazines - metabolism
Triazoles - chemistry
Triazoles - metabolism
title Mechanistic insights into allosteric regulation of the A 2A adenosine G protein-coupled receptor by physiological cations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20insights%20into%20allosteric%20regulation%20of%20the%20A%202A%20adenosine%20G%20protein-coupled%20receptor%20by%20physiological%20cations&rft.jtitle=Nature%20communications&rft.au=Ye,%20Libin&rft.date=2018-04-10&rft.volume=9&rft.issue=1&rft.spage=1372&rft.pages=1372-&rft.eissn=2041-1723&rft_id=info:doi/&rft_dat=%3Cpubmed%3E29636462%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_296364623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/29636462&rfr_iscdi=true