Loading…

Quantitation of specific binding ratio in 123 I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom

This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digi...

Full description

Saved in:
Bibliographic Details
Published in:Radiological physics and technology 2018-06, Vol.11 (2), p.219
Main Authors: Furuta, Akihiro, Onishi, Hideo, Amijima, Hizuru
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.
ISSN:1865-0341